skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Domke, Grant"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Forest canopy complexity (i.e., the three‐dimensional structure of the canopy) is often associated with increased species diversity as well as high primary productivity across natural forests. However, canopy complexity, tree diversity, and productivity are often confounded in natural forests, and the mechanisms of these relationships remain unclear. Here, we used two large tree diversity experiments in North America to assess three hypotheses: (1) increasing tree diversity leads to increased canopy complexity, (2) canopy complexity is positively related to tree productivity, and (3) the relationship between tree diversity and tree productivity is indirect and driven by the positive effects of canopy complexity. We found that increasing tree diversity from monocultures to mixtures of 12 species increases canopy complexity and productivity by up to 71% and 73%, respectively. Moreover, structural equation modeling indicates that the effects of tree diversity on productivity are indirect and mediated primarily by changes in internal canopy complexity. Ultimately, we suggest that increasing canopy complexity can be a major mechanism by which tree diversity enhances productivity in young forests. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Forests are integral to the global land carbon sink, which has sequestered ~30% of anthropogenic carbon emissions over recent decades. The persistence of this sink depends on the balance of positive drivers that increase ecosystem carbon storage—e.g., CO2fertilization—and negative drivers that decrease it—e.g., intensifying disturbances. The net response of forest productivity to these drivers is uncertain due to the challenge of separating their effects from background disturbance–regrowth dynamics. We fit non-linear models to US forest inventory data (113,806 plot remeasurements in non-plantation forests from ~1999 to 2020) to quantify productivity trends while accounting for stand age, tree mortality, and harvest. Productivity trends were generally positive in the eastern United States, where climate change has been mild, and negative in the western United States, where climate change has been more severe. Productivity declines in the western United States cannot be explained by increased mortality or harvest; these declines likely reflect adverse climate-change impacts on tree growth. In the eastern United States, where data were available to partition biomass change into age-dependent and age-independent components, forest maturation and increasing productivity (likely due, at least in part, to CO2fertilization) contributed roughly equally to biomass carbon sinks. Thus, adverse effects of climate change appear to overwhelm any positive drivers in the water-limited forests of the western United States, whereas forest maturation and positive responses to age-independent drivers contribute to eastern US carbon sinks. The future land carbon balance of forests will likely depend on the geographic extent of drought and heat stress. 
    more » « less
  3. The physical structure of vegetation is thought to be closely related to ecosystem function, but little is known of its pertinence across geographic regions. Here, we used data from over three million trees in continental North America to evaluate structural diversity – the volumetric capacity and physical arrangement of biotic components in ecosystems – as a predictor of productivity. We show that structural diversity is a robust predictor of forest productivity and consistently outperforms the traditional measure – species diversity – across climate conditions in North America. Moreover, structural diversity appears to be a better surrogate of niche occupancy because it captures variation in size that can be used to measure realized niche space. Structural diversity offers an easily measured metric to direct restoration and management decision making to maximize ecosystem productivity and carbon sequestration. 
    more » « less
  4. Major efforts are underway to harness the carbon sequestration capacity of forests to combat global climate change. However, tree damage and death associated with insect and disease disturbance can reduce this carbon sequestration capacity. We quantified average annual changes in live tree carbon accumulation associated with insect and disease disturbances utilizing the most recent (2001 – 2019) remeasurement data from National Forest Inventory plots in the contiguous United States. Forest plots recently impacted by insect disturbance sequestered on average 69% less carbon in live trees than plots with no recent disturbance, and plots recently impacted by disease disturbance sequestered on average 28% less carbon in live trees than plots with no recent disturbance. Nationally, we estimate that carbon sequestration by live trees, defined as the estimated average annual rate of above- and belowground carbon accumulation in live trees (diameter at breast height ≥ 2.54 cm) on forest land, has been reduced by 9.33 teragrams carbon per year (95% confidence interval: 7.11 to 11.58) in forests that have experienced recent insect disturbance and 3.49 teragrams carbon per year (95% confidence interval: 1.30 to 5.70) in forests that have experienced recent disease disturbance, for a total reduction of 12.83 teragrams carbon per year (95% confidence interval: 8.41 to 17.28). Strengthened international trade policies and phytosanitary standards as well as improved forest management have the potential to protect forests and their natural capacity to contribute to climate change mitigation. 
    more » « less
  5. Abstract Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity. 
    more » « less
  6. Plant-fungal symbioses play critical roles in vegetation dynamics and nutrient cycling, modulating the impacts of global changes on ecosystem functioning. Here, we used forest inventory data consisting of more than 3 million trees to develop a spatially resolved “mycorrhizal tree map” of the contiguous United States. We show that abundances of the two dominant mycorrhizal tree groups—arbuscular mycorrhizal (AM) and ectomycorrhizal trees—are associated primarily with climate. Further, we show that anthropogenic influences, primarily nitrogen (N) deposition and fire suppression, in concert with climate change, have increased AM tree dominance during the past three decades in the eastern United States. Given that most AM-dominated forests in this region are underlain by soils with high N availability, our results suggest that the increasing abundance of AM trees has the potential to induce nutrient acceleration, with critical consequences for forest productivity, ecosystem carbon and nutrient retention, and feedbacks to climate change. 
    more » « less