skip to main content


Search for: All records

Creators/Authors contains: "Dong, Lixin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Dynamic DNA origami nanostructures that respond to external stimuli are promising platforms for cargo delivery and nanoscale sensing. However, the low stability of such nanostructures under physiological conditions presents a major obstacle for their use in biomedical applications. This article describes a stable tetrahedral DNA nanorobot (TDN) programmed to undergo a controlled conformational change in response to epithelial cell adhesion molecule (EpCAM), a molecular biomarker specifically expressed on the circulating tumor cells. Multiresolution molecular dynamics simulations verified the overall stability of the folded TDN design and characterized local distortions in the folded structure. Atomic force microscopy and gel electrophoresis results showed that tetragonal structures are more stable than unfolded DNA origami sheets. Live cell experiments demonstrated the low cytotoxicity and target specificity of TDN. In summary, the proposed TDN can not only effectively resist nuclease catalysis but also has the potential to monitor EpCAM-positive cells precisely. 
    more » « less
  2. Abstract

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by dystrophin mutations, leading to the loss of sarcolemmal integrity, and resulting in progressive myofibre necrosis and impaired muscle function. Our previous studies suggest that lipin1 is important for skeletal muscle regeneration and myofibre integrity. Additionally, we discovered that mRNA expression levels of lipin1 were significantly reduced in skeletal muscle of DMD patients and the mdx mouse model. To understand the role of lipin1 in dystrophic muscle, we generated dystrophin/lipin1 double knockout (DKO) mice, and compared the limb muscle pathology and function of wild‐type B10, muscle‐specific lipin1 deficient (lipin1Myf5cKO), mdx and DKO mice. We found that further knockout of lipin1 in dystrophic muscle exhibited a more severe phenotype characterized by increased necroptosis, fibrosis and exacerbated membrane damage in DKO compared to mdx mice. In barium chloride‐induced muscle injury, both lipin1Myf5cKOand DKO showed prolonged regeneration at day 14 post‐injection, suggesting that lipin1 is critical for muscle regeneration.In situcontractile function assays showed that lipin1 deficiency in dystrophic muscle led to reduced specific force production. Using a cell culture system, we found that lipin1 deficiency led to elevated expression levels of necroptotic markers and medium creatine kinase, which could be a result of sarcolemmal damage. Most importantly, restoration of lipin1 inhibited the elevation of necroptotic markers in differentiated primary lipin1‐deficient myoblasts. Overall, our data suggests that lipin1 plays complementary roles in myofibre stability and muscle function in dystrophic muscles, and overexpression of lipin1 may serve as a potential therapeutic strategy for dystrophic muscles.image

    Key points

    We identified that lipin1 mRNA expression levels are significantly reduced in skeletal muscles of Duchenne muscular dystrophy patients and mdx mice.

    We found that further depletion of lipin1 in skeletal muscles of mdx mice induces more severe dystrophic phenotypes, including enhanced myofibre sarcolemma damage, muscle necroptosis, inflammation, fibrosis and reduced specific force production.

    Lipin1 deficiency leads to elevated expression levels of necroptotic markers, whereas restoration of lipin1 inhibits their expression.

    Our results suggest that lipin1 is functionally complementary to dystrophin in muscle membrane integrity and muscle regeneration.

     
    more » « less