skip to main content


Search for: All records

Creators/Authors contains: "Donley, Gavin J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 22, 2025
  2. Understanding the yielding of complex fluids is an important rheological challenge that affects our ability to engineer and process materials for a wide variety of applications. Common theoretical understandings of yield stress fluids follow the Oldroyd–Prager formalism in which the material behavior below the yield stress is treated as solidlike, and above the yield stress as liquidlike, with an instantaneous transition between the two states. This formalism was built on a quasi-static approach to the yield stress, while most applications, ranging from material processing to end user applications, involve a transient approach to yielding over a finite timescale. Using stress-controlled oscillatory shear experiments, we show that yield stress fluids flow below their yield stresses. This is quantified through measuring the strain shift, which is the value about which the strain oscillates during a stress-controlled test and is a function of only the unrecoverable strain. Measurements of the strain shift are, therefore, measurements of flow having taken place. These experimental results are compared to the Herschel–Bulkley form of the Saramito model, which utilizes the Oldroyd–Prager formalism, and the recently published Kamani–Donley–Rogers (KDR) model, in which one constitutive equation represents the entire range of material responses. Scaling relationships are derived, which allow us to show why yield stress fluids will flow across all stresses, above and below their yield stress. Finally, derivations are presented that show strain shift can be used to determine average metrics previously attainable only through recovery rheology, and these are experimentally verified.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. We probe the microstructural yielding dynamics of a concentrated colloidal system by performing creep/recovery tests with simultaneous collection of coherent scattering data via X-ray Photon Correlation Spectroscopy (XPCS). This combination of rheology and scattering allows for time-resolved observations of the microstructural dynamics as yielding occurs, which can be linked back to the applied rheological deformation to form structure–property relations. Under sufficiently small applied creep stresses, examination of the correlation in the flow direction reveals that the scattering response recorrelates with its predeformed state, indicating nearly complete microstructural recovery, and the dynamics of the system under these conditions slows considerably. Conversely, larger creep stresses increase the speed of the dynamics under both applied creep and recovery. The data show a strong connection between the microstructural dynamics and the acquisition of unrecoverable strain. By comparing this relationship to that predicted from homogeneous, affine shearing, we find that the yielding transition in concentrated colloidal systems is highly heterogeneous on the microstructural level. 
    more » « less
  4. Soft particulate gels can reversibly yield when sufficient deformation is applied, and the characteristics of this transition can be enhanced or limited by designing hybrid hydrogel composites. While the microscopic dynamics and macroscopic rheology of these systems have been studied separately in detail, the development of direct connections between the two has been difficult, particularly with regard to the nonlinear rheology. To bridge this gap, we perform a series of large amplitude oscillatory shear (LAOS) numerical measurements on model soft particulate gels at different volume fractions using coarse-grained molecular dynamics simulations. We first study a particulate network with local bending stiffness and then we combine it with a second component that can provide additional cross-linking to obtain two-component networks. Through the sequence of physical processes (SPP) framework, we define time-resolved dynamic moduli, and by tracking the changes in these moduli through the period, we can distinguish transitions in the material behavior as a function of time. This approach helps us establish the microscopic origin of the nonlinear rheology by connecting the changes in dynamic moduli to the corresponding microstructural changes during the deformation including the nonaffine displacement of particles, and the breakage, formation, and orientation of bonds.

     
    more » « less
  5. A full understanding of the sequence of processes exhibited by yield stress fluids under large amplitude oscillatory shearing is developed using multiple experimental and analytical approaches. A novel component rate Lissajous curve, where the rates at which strain is acquired unrecoverably and recoverably are plotted against each other, is introduced and its utility is demonstrated by application to the analytical responses of four simple viscoelastic models. Using the component rate space, yielding and unyielding are identified by changes in the way strain is acquired, from recoverably to unrecoverably and back again. The behaviors are investigated by comparing the experimental results with predictions from the elastic Bingham model that is constructed using the Oldroyd–Prager formalism and the recently proposed continuous model by Kamani, Donley, and Rogers in which yielding is enhanced by rapid acquisition of elastic strain. The physical interpretation gained from the transient large amplitude oscillatory shear (LAOS) data is compared to the results from the analytical sequence of physical processes framework and a novel time-resolved Pipkin space. The component rate figures, therefore, provide an independent test of the interpretations of the sequence of physical processes analysis that can also be applied to other LAOS analysis frameworks. Each of these methods, the component rates, the sequence of physical processes analysis, and the time-resolved Pipkin diagrams, unambigiously identifies the same material physics, showing that yield stress fluids go through a sequence of physical processes that includes elastic deformation, gradual yielding, plastic flow, and gradual unyielding.

     
    more » « less
  6. Materials that exhibit yielding behavior are used in many applications, from spreadable foods and cosmetics to direct write three-dimensional printing inks and filled rubbers. Their key design feature is the ability to transition behaviorally from solid to fluid under sufficient load or deformation. Despite its widespread applications, little is known about the dynamics of yielding in real processes, as the nonequilibrium nature of the transition impedes understanding. We demonstrate an iteratively punctuated rheological protocol that combines strain-controlled oscillatory shear with stress-controlled recovery tests. This technique provides an experimental decomposition of recoverable and unrecoverable strains, allowing for solid-like and fluid-like contributions to a yield stress material’s behavior to be separated in a time-resolved manner. Using this protocol, we investigate the overshoot in loss modulus seen in materials that yield. We show that this phenomenon is caused by the transition from primarily solid-like, viscoelastic dissipation in the linear regime to primarily fluid-like, plastic flow at larger amplitudes. We compare and contrast this with a viscoelastic liquid with no yielding behavior, where the contribution to energy dissipation from viscous flow dominates over the entire range of amplitudes tested.

     
    more » « less