skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Donnelly, G P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. We present a study of new 7.7–11.3 μm data obtained with theJames WebbSpace Telescope Mid-InfraRed Instrument in the starburst galaxy M 82. In particular, we focus on the dependency of the integrated CO(1–0) line intensity on the MIRI-F770W and MIRI-F1130W filter intensities to investigate the correlation between H2content and the 7.7 and 11.3 μm features from polycyclic aromatic hydrocarbons (PAH) in M 82’s outflows. To perform our analysis, we identify CO clouds using the archival12CO(J = 1 − 0) NOEMA moment 0 map within 2 kpc from the center of M 82, with sizes ranging between ∼21 and 270 pc; then, we compute the CO-to-PAH relations for the 306 validated CO clouds. On average, the power-law slopes for the two relations in M 82 are lower than what is seen in local main-sequence spirals. In addition, there is a moderate correlation betweenICO(1 − 0) − I7.7 μm/I11.3 μmfor some of the CO cloud groups analyzed in this work. Our results suggest that the extreme conditions in M 82 translate into CO not tracing the full budget of molecular gas in smaller clouds, perhaps as a consequence of photoionization and/or emission suppression of CO molecules due to hard radiation fields from the central starburst. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Abstract Accurately determining gas-phase metal abundances within galaxies is critical as metals strongly affect the physics of the interstellar medium. To date, the vast majority of widely used gas-phase abundance indicators rely on emission from bright optical lines, whose emissivities are highly sensitive to the electron temperature. Alternatively, direct-abundance methods exist that measure the temperature of the emitting gas directly, though these methods usually require challenging observations of highly excited auroral lines. Low-lying far-infrared (FIR) fine structure lines are largely insensitive to electron temperature and thus provide an attractive alternative to optically derived abundances. Here, we introduce the far-infrared abundance (FIRA) project, which employs these FIR transitions, together with both radio free–free emission and hydrogen recombination lines, to derive direct, absolute gas-phase oxygen abundances. Our first target is M101, a nearby spiral galaxy with a relatively steep abundance gradient. Our results are consistent with the O ++ electron temperatures and absolute oxygen abundances derived using optical direct-abundance methods by the CHemical Abundance Of Spirals (CHAOS) program, with a small difference (∼1.5 σ ) in the radial abundance gradients derived by the FIR/free–free-normalized versus CHAOS/direct-abundance techniques. This initial result demonstrates the validity of the FIRA methodology—with the promise of determining absolute metal abundances within dusty star-forming galaxies, both locally and at high redshift. 
    more » « less