skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Donnelly, Vincent M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Low-temperature plasmas (LTPs) are essential to manufacturing devices in the semiconductor industry, from creating extreme ultraviolet photons used in the most advanced lithography to thin film etching, deposition, and surface modifications. It is estimated that 40%–45% of all process steps needed to manufacture semiconductor devices use LTPs in one form or another. LTPs have been an enabling technology in the multidecade progression of the shrinking of device dimensions, often referred to as Moore’s law. New challenges in circuit and device design, novel materials, and increasing demands to achieve environmentally benign processing technologies require advances in plasma technology beyond the current state-of-the-art. The Department of Energy Office of Science Fusion Energy Sciences held a workshop titled Plasma Science for Microelectronics Nanofabrication in August 2022 to discuss the plasma science challenges and technical barriers that need to be overcome to continue to develop the innovative plasma technologies required to support and advance the semiconductor industry. One of the key outcomes of the workshop was identifying a set of priority research opportunities (PROs) to focus attention on the most strategic plasma science challenges to address to benefit the semiconductor industry. For each PRO, scientific challenges and recommended strategies to address those challenges were identified. This article summarizes the PROs identified by the workshop participants.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. Plasma etching is an essential semiconductor manufacturing technology required to enable the current microelectronics industry. Along with lithographic patterning, thin-film formation methods, and others, plasma etching has dynamically evolved to meet the exponentially growing demands of the microelectronics industry that enables modern society. At this time, plasma etching faces a period of unprecedented changes owing to numerous factors, including aggressive transition to three-dimensional (3D) device architectures, process precision approaching atomic-scale critical dimensions, introduction of new materials, fundamental silicon device limits, and parallel evolution of post-CMOS approaches. The vast growth of the microelectronics industry has emphasized its role in addressing major societal challenges, including questions on the sustainability of the associated energy use, semiconductor manufacturing related emissions of greenhouse gases, and others. The goal of this article is to help both define the challenges for plasma etching and point out effective plasma etching technology options that may play essential roles in defining microelectronics manufacturing in the future. The challenges are accompanied by significant new opportunities, including integrating experiments with various computational approaches such as machine learning/artificial intelligence and progress in computational approaches, including the realization of digital twins of physical etch chambers through hybrid/coupled models. These prospects can enable innovative solutions to problems that were not available during the past 50 years of plasma etch development in the microelectronics industry. To elaborate on these perspectives, the present article brings together the views of various experts on the different topics that will shape plasma etching for microelectronics manufacturing of the future.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  3. Photo-assisted etching of p-type Si was previously found to occur in a chlorine-containing, Faraday-shielded, inductively coupled plasma (ICP), and this was attributed to the vacuum ultraviolet (VUV) light generated by the plasma. Other causes for the very high etching rates were ruled out, including ion bombardment. In the present study, the substrate in the main Cl2/Ar ICP was subjected to extra VUV light that was generated in an independently controlled, auxiliary Ar/He ICP in tandem with the main ICP. The ICPs were separated by a tungsten mesh and a bundle of high-aspect-ratio quartz tubes in a honeycomb configuration. There was no measurable perturbation of the main plasma by the auxiliary plasma. The etching rate was found to be enhanced by 11%–51% with the additional VUV light provided by the auxiliary ICP. With absolute measurements of the auxiliary ICP photon flux at the sample surface, as described elsewhere, incredibly large etching yields of 90–240 Si atoms per photon were obtained. It is argued that etching is not a result of electron–hole pair formation but is instead ascribed to a photocatalytic chain reaction.

     
    more » « less
  4. A new method for absolute measurement of the vacuum ultraviolet (VUV) photon flux at the edge of a plasma is described. The light produced by the plasma was allowed to strike a negatively biased, gold-coated copper substrate remote from the plasma. The resulting photoelectron emission current was measured, and the absolute photon flux was then found from the known photoelectron yield of Au. The method was used to quantify the amount of VUV light produced by an Ar/He inductively coupled plasma (ICP). Strong emissions at 104.82 and 106.67 nm, corresponding to the 1s2and 1s4resonant states of Ar, were observed. The maximum, integrated VUV photon flux measured at the remote location was 3.2 × 1013 photons/cm2 s. This was estimated to correspond to a flux of 5 × 1015 photons/cm2 s at the edge of the ICP, in the range of reported values under similar conditions.

     
    more » « less