skip to main content


Search for: All records

Creators/Authors contains: "Douglas, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wax, Adam ; Backman, Vadim (Ed.)
    Free, publicly-accessible full text available March 12, 2025
  2. Free, publicly-accessible full text available November 1, 2024
  3. It is well established that access to social supports is essential for engineering students’ persistence and yet access to supports varies across groups. Understanding the differential supports inherent in students’ social networks and then working to provide additional needed supports can help the field of engineering education become more inclusive of all students. Our work contributes to this effort by examing the reliability and fairness of a social capital instrument, the Undergraduate Supports Survey (USS). We examined the extent to which two scales were reliable across ability levels (level of social capital), gender groups and year-in-school. We conducted two item response theory (IRT) models using a graded response model and performed differential item functioning (DIF) tests to detect item differences in gender and year-in-school. Our results indicate that most items have acceptable to good item discrimination and difficulty. DIF analysis shows that multiple items report DIF across gender groups in the Expressive Support scale in favor of women and nonbinary engineering students. DIF analysis shows that year-in-school has little to no effect on items, with only one DIF item. Therefore, engineering educators can use the USS confidently to examine expressive and instrumental social capital in undergraduates across year-in-school. Our work can be used by the engineering education research community to identify and address differences in students’ access to support. We recommend that the engineering education community works to be explicit in their expressive and instrumental support. Future work will explore the measurement invariance in Expressive Support items across gender. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  4. This work-in-progress (WIP) paper aims to elucidate how students have developed professional skills since the onset of the COVID-19 pandemic and who are the people who have provided skill development opportunities. Because of the way social distancing affected engineering education during the pandemic, developing professional skills may have been a challenge for engineering students. While online courses and virtual meetings allowed students to remain in contact with faculty and each other, the opportunities to continue having deep relationships (i.e., strong ties) were sparse. Our paper presents an early look at findings from the qualitative phase of an explanatory mixed methods study conducted with 1,234 undergraduates from 13 schools in the US. Our ongoing thematic qualitative analysis reveals that the changes that accompanied social distancing and periods of emergency remote teaching caused by COVID-19 have reinforced different opportunities to develop professional skills than prior to the pandemic. While some students expressed they had fewer opportunities to develop professional skills, participants also identified opportunities to (1) hone written communication skills when inperson discussions were reduced and (2) leverage knowledge from family members to continue developing professionally. Our next steps include finishing the qualitative analysis phase of the project and mixing the qualitative and quantitative data to develop overarching findings that the engineering education community can use to understand how students’ professional skills develop and how to promote that development even during times of educational disruption. 
    more » « less
  5. The purpose of our poster presentation is two-fold: 1) to provide an overview of our NSF project, Pandemic Impact: Undergraduates’ Social Capital and Engineering Professional Skills, and 2) to report our progress and preliminary quantitative findings. We hope to discuss our project and preliminary results with fellow engineering educators and receive feedback. The COVID-19 pandemic has impacted engineering education in multiple ways that will continue to be felt for years to come. One of the less understood ways the pandemic has continued to leave a residue on engineering education is how social distancing and online courses altered students’ professional development. Of particular concern are students who were either new to the institution or started their college education during the pandemic. These students have potentially limited opportunities to establish social relationships at their educational institutions compared to students who already developed such relationships when the pandemic-induced online learning took place. The differences in students’ social relationships can have other, more profound impacts on their undergraduate engineering experiences. Research has shown that students’ social relationships provide them with connections to resources and supports essential for navigating an engineering program and help them obtain more opportunities to practice non-technical professional skills [1], [2]. Although social distancing measures diminished and students returned primarily to in-person, the pandemic has altered the development of engineering students in ways not understood. In particular, understanding the nature of students’ social interactions on campus and the types of opportunities for professional development is essential so that instructors and campus staff can respond to the developmental needs of students. As a result, the overarching research question for our project is: How do engineering undergraduates leverage relationships (operationalized as social capital) to gain opportunities to develop professional skills? 
    more » « less
  6. van Wijnen, Andre (Ed.)
    Synovial fluid is composed of hyaluronan and proteoglycan-4 (PRG4 or lubricin), which work synergistically to maintain joint lubrication. In diseases like osteoarthritis, hyaluronan and PRG4 concentrations can be altered, resulting in lowered synovial fluid viscosity, and pro-inflammatory cytokine concentrations within the synovial fluid increase. Synovial fibroblasts within the synovium are responsible for contributing to synovial fluid and can be targeted to improve endogenous production of hyaluronan and PRG4 and to alter the cytokine profile. We cyclically loaded SW982 synoviocytes to 0%, 5%, 10%, or 20% strain for three hours at 1 Hz. To assess the impact of substrate stiffness, we compared the 0% strain group to cells grown on tissue culture plastic. We measured the expression of hyaluronan turnover genes, hyaluronan localization within the cell layer, hyaluronan concentration, PRG4 concentration, and the cytokine profile within the media. Our results show that the addition of cyclic loading increased HAS3 expression, but not in a magnitude-dependent response. Hyaluronidase expression was impacted by strain magnitude, which is exemplified by the decrease in hyaluronan concentration due to cyclic loading. We also show that PRG4 concentration is increased at 5% strain, while higher strain magnitude decreases overall PRG4 concentration. Finally, 10% and 20% strain show a distinct, more pro-inflammatory cytokine profile when compared to the unloaded group. Multivariate analysis showed distinct separation between certain strain groups in being able to predict strain group, hyaluronan concentration, and PRG4 concentration from gene expression or cytokine concentration data, highlighting the complexity of the system. Overall, this study shows that cyclic loading can be used tool to modulate the endogenous production of hyaluronan, PRG4, and cytokines from synovial fibroblasts. 
    more » « less