skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dow, Liam P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The feedback between mechanical and chemical signals plays a key role in controlling many biological processes and collective cell behavior. Here we focus on the emergence of spatiotemporal density waves in a one-dimensional “cell train.” Combining a minimal theoretical model with experiments on MDCK epithelial cells confined to a linear pattern, we examine the spontaneous oscillations driven by feedback between myosin activation and mechanical deformations, as well as their effect on the response of the tissue to externally applied deformations. We show that the nature and frequency of spontaneous oscillations is controlled by the size of the cell train, with a transition from size-dependent standing waves to intrinsic spontaneous waves at the natural frequency of the tissue. The response to external boundary perturbations exhibits a resonance at this natural frequency, providing a possible venue for inferring the mechanochemical couplings that control the tissue behavior from rheological experiments. 
    more » « less
  2. The use of bacteriophages (phages) for antibacterial therapy is under increasing consideration to treat antimicrobial-resistant infections. Phages have evolved multiple mechanisms to target their bacterial hosts, such as high-affinity, environmentally hardy receptor-binding proteins. However, traditional phage therapy suffers from multiple challenges stemming from the use of an exponentially replicating, evolving entity whose biology is not fully characterized (e.g., potential gene transduction). To address this problem, we conjugate the phages to gold nanorods, creating a reagent that can be destroyed upon use (termed “phanorods”). Chimeric phages were engineered to attach specifically to several Gram-negative organisms, including the human pathogens Escherichia coli , Pseudomonas aeruginosa , and Vibrio cholerae , and the plant pathogen Xanthomonas campestris . The bioconjugated phanorods could selectively target and kill specific bacterial cells using photothermal ablation. Following excitation by near-infrared light, gold nanorods release energy through nonradiative decay pathways, locally generating heat that efficiently kills targeted bacterial cells. Specificity was highlighted in the context of a P. aeruginosa biofilm, in which phanorod irradiation killed bacterial cells while causing minimal damage to epithelial cells. Local temperature and viscosity measurements revealed highly localized and selective ablation of the bacteria. Irradiation of the phanorods also destroyed the phages, preventing replication and reducing potential risks of traditional phage therapy while enabling control over dosing. The phanorod strategy integrates the highly evolved targeting strategies of phages with the photothermal properties of gold nanorods, creating a well-controlled platform for systematic killing of bacterial cells. 
    more » « less