skip to main content

Search for: All records

Creators/Authors contains: "Dowben, Peter A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The coordination chemistry of uranyl ions with surface immobilized peptides was studied using X-ray photoemission spectroscopy (XPS). All the peptides in the study were modified using a six-carbon alkanethiol as a linker on a gold substrate with methylene blue as the redox label. The X-ray photoemission spectra reveal that each modified peptide interacts differently with the uranyl ion. For all the modified peptides, the XPS spectra were taken in both the absence and presence of the uranium, and their comparison reveals that the interaction depends on the chemical group present in the peptides. The XPS results show that, among all the modified peptides in the current study, the (arginine)9 (R9) modified peptide showed the largest response to uranium. In the order of response to uranium, the second largest response was shown by the modified (arginine)6 (R6) peptide followed by the modified (lysine)6 (K6) peptide. Other modified peptides, (alanine)6 (A6), (glutamic acid)6 (E6) and (serine)6 (S6), did not show any response to uranium.
    Free, publicly-accessible full text available December 1, 2023
  2. Abstract

    Transition metal trichalcogenides (TMTs) are two-dimensional (2D) systems with quasi-one-dimensional (quasi-1D) chains. These 2D materials are less susceptible to undesirable edge defects, which enhances their promise for low-dimensional optical and electronic device applications. However, so far, the performance of 2D devices based on TMTs has been hampered by contact-related issues. Therefore, in this review, a diligent effort has been made to both elucidate and summarize the interfacial interactions between gold and various TMTs, namely, In4Se3, TiS3, ZrS3, HfS3, and HfSe3. X-ray photoemission spectroscopy data, supported by the results of electrical transport measurements, provide insights into the nature of interactions at the Au/In4Se3, Au/TiS3, Au/ZrS3, Au/HfS3, and Au/HfSe3interfaces. This may help identify and pave a path toward resolving the contemporary contact-related problems that have plagued the performance of TMT-based nanodevices.

    Graphical abstract

    IVcharacteristics of (a) TiS3, (b) ZrS3, and (c) HfS3

  3. Free, publicly-accessible full text available February 1, 2024
  4. Free, publicly-accessible full text available October 20, 2023
  5. Free, publicly-accessible full text available June 1, 2023
  6. X-ray photoemission spectroscopy (XPS) has been used to examine the interaction between Au and HfS 3 at the Au/HfS 3 interface. XPS measurements reveal dissociative chemisorption of O 2 , leading to the formation of an oxide of Hf at the surface of HfS 3 . This surface hafnium oxide, along with the weakly chemisorbed molecular species, such as O 2 and H 2 O, are likely responsible for the observed p-type characteristics of HfS 3 reported elsewhere. HfS 3 devices exhibit n-type behaviour if measured in vacuum but turn p-type in air. Au thickness-dependent XPS measurements provide clear evidence of band bending as the S 2p and Hf 4f core-level peak binding energies for Au/HfS 3 are found to be shifted to higher binding energies. This band bending implies formation of a Schottky-barrier at the Au/HfS 3 interface, which explains the low measured charge carrier mobilities of HfS 3 -based devices. The transistor measurements presented herein also indicate the existence of a Schottky barrier, consistent with the XPS core-level binding energy shifts, and show that the bulk of HfS 3 is n-type.
    Free, publicly-accessible full text available June 8, 2023
  7. We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the “write” speed is an important criterion.
    Free, publicly-accessible full text available May 1, 2023
  8. Abstract X-ray Photoelectron Spectroscopy (XPS) has been used to study the interactions of heavy metal ions with DNA with some success. Surface sensitivity and selectivity of XPS are advantageous for identifying and characterizing the chemical and elemental structure of the DNA to metal interaction. This review summarizes the status of what amounts to a large part of the photoemission investigations of biomolecule interactions with metals and offers insight into the mechanism for heavy metal-bio interface interactions. Specifically, it is seen that metal interaction with DNA results in conformational changes in the DNA structure.
    Free, publicly-accessible full text available March 7, 2023
  9. Abstract GeI 2 is an interesting two-dimensional wide-band gap semiconductor because of diminished edge scattering due to an absence of dangling bonds. Angle-resolved x-ray photoemission spectroscopy indicates a germanium rich surface, and a surface to bulk core-level shift of 1.8 eV in binding energy, between the surface and bulk components of the Ge 2p 3/2 core-level, making clear that the surface is different from the bulk. Temperature dependent studies indicate an effective Debye temperature ( θ D ) of 186 ± 18 K for the germanium x-ray photoemission spectroscopy feature associated with the surface. These measurements also suggest an unusually high effective Debye temperature for iodine (587 ± 31 K), implying that iodine is present in the bulk of the material, and not the surface. From optical absorbance, GeI 2 is seen to have an indirect (direct) optical band gap of 2.60 (2.8) ± 0.02 (0.1) eV, consistent with the expectations. Temperature dependent magnetometry indicates that GeI 2 is moment paramagnetic at low temperatures (close to 4 K) and shows a diminishing saturation moment at high temperatures (close to 300 K and above).
  10. Free, publicly-accessible full text available March 1, 2023