skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dowdy, Nicolas_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Classification of the biological diversity on Earth is foundational to all areas of research within the natural sciences. Reliable biological nomenclatural and taxonomic systems facilitate efficient access to information about organisms and their names over time. However, broadly sharing, accessing, delivering, and updating these resources remains a persistent problem. This barrier has been acknowledged by the biodiversity data sharing community, yet concrete efforts to standardize and continually update taxonomic names in a sustainable way remain limited. High diversity groups such as arthropods are especially challenging as available specimen data per number of species is substantially lower than vertebrate or plant groups. The Terrestrial Parasite Tracker Thematic Collections Network project developed a workflow for gathering expert-verified taxonomic names across all available sources, aligning those sources, and publishing a single resource that provides a model for future endeavors to standardize digital specimen identification data. The process involved gathering expert-verified nomenclature lists representing the full taxonomic scope of terrestrial arthropod parasites, documenting issues experienced, and finding potential solutions for reconciliation of taxonomic resources against large data publishers. Although discordance between our expert resources and the Global Biodiversity Information Facility are relatively low, the impact across all taxa affects thousands of names that correspond to hundreds of thousands of specimen records. Here, we demonstrate a mechanism for the delivery and continued maintenance of these taxonomic resources, while highlighting the current state of taxon name curation for biodiversity data sharing. 
    more » « less
  2. Abstract Anchored hybrid enrichment (AHE) has emerged as a powerful tool for uncovering the evolutionary relationships within many taxonomic groups. AHE probe sets have been developed for a variety of insect groups, though none have yet been shown to be capable of simultaneously resolving deep and very shallow (e.g., intraspecific) divergences. In this study, we present NOC1, a new AHE probe set (730 loci) for Lepidoptera specialized for tiger moths and assess its ability to deliver phylogenetic utility at all taxonomic levels. We test the NOC1 probe set with 142 individuals from 116 species sampled from all the major lineages of Arctiinae (Erebidae), one of the most diverse groups of noctuoids (>11 000 species) for which no well‐resolved, strongly supported phylogenetic hypothesis exists. Compared to previous methods, we generally recover much higher branch support (BS), resulting in the most well‐supported, well‐resolved phylogeny of Arctiinae to date. At the most shallow‐levels, NOC1 confidently resolves species‐level and intraspecific relationships and potentially uncovers cryptic species diversity within the genusHypoprepia. We also implement a ‘sensitivity analysis’ to explore different loci combinations and site sampling strategies to determine whether a reduced probe set can yield results similar to those of the full probe set. At both deep and shallow levels, only 50–175 of the 730 loci included in the complete NOC1 probe set were necessary to resolve most relationships with high confidence, though only when the more rapidly evolving sites within each locus are included. This demonstrates that AHE probe sets can be tailored to target fewer loci without a significant reduction in BS, allowing future studies to incorporate more taxa at a lower per‐sample sequencing cost. NOC1 shows great promise for resolving long‐standing taxonomic issues and evolutionary questions within arctiine lineages, one of the most speciose clades within Lepidoptera. 
    more » « less