Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Heterocyclic rings are important structural scaffolds encountered in both natural and synthetic compounds, and their biological activity often depends on these motifs. They are predominantly accessible via cycloaddition reactions, realized by either thermal, photochemical, or catalytic means. Various starting materials are utilized for this purpose, and, among them, diazo compounds are often encountered, especially vinyldiazo compounds that give access to donor-acceptor cyclopropenes which engage in [2+n] cycloaddition reactions. Herein, we describe the development of photochemical processes that produce diverse heterocyclic scaffolds from multisubstituted oximidovinyldiazo compounds. High chemoselectivity, good functional group tolerance, and excellent scalability characterize this methodology, thus predisposing it for broader applications. Experimental and computational studies reveal that under light irradiation these diazo reagents selectively transform into cyclopropenes which engage in cycloaddition reactions with various dipoles, while under thermal conditions the formation of pyrazole from vinyldiazo compounds is favored.more » « less
-
Abstract [3+n]‐Cycloaddition reactions that employ donor‐acceptor cyclopropanes using either chiral catalysts and racemic cyclopropanes or achiral catalysts and chiral, non‐racemic, cyclopropanes have become useful transformations for the construction of carbocyclic and heterocyclic compounds, with both processes offering mechanistic and structural advantages in ring formation. Although the vast majority of asymmetric cycloaddition reactions of donor‐acceptor cyclopropanes have been performed with racemic cyclopropane compounds catalyzed by Lewis acids with chiral ligands, optically active cyclopropane compounds can serve the same role using Lewis acids without chiral ligands. This review covers the use of chiral catalysts with racemic donor‐acceptor cyclopropanes and the use of chiral non‐racemic donor‐acceptor cyclopropanes with achiral Lewis acid catalysts.more » « less
-
Abstract 1,2,3‐Trisubstituted donor–acceptor cyclopropenes (DACPs) generated in situ from enoldiazo compounds react with nucleophiles to form α‐substituted succinic acid derivatives in high yields. Initial dirhodium(II) carboxylate catalysis rapidly converts enoldiazo‐acetates or ‐acetamides to DACPs that undergo catalyst‐free Favorskii ring opening with amines, and also with anilines, alcohols, and thiols, when facilitated by catalytic amounts of 4‐dimethylaminopyridine (DMAP). This methodology provides easy access to mixed esters and amides of monosubstituted succinic acids, including derivatives of naturally occurring compounds. It also affords dihydrazide, dihydroxamic acid, and diamide derivatives, as well as α‐substituted tetrahydropyridazine‐3,6‐diones in high yields. Attempts to generate optically enriched DACPs were not successful because their populations having theRandSconfigurations formed with a chiral dirhodium catalyst are quite similar, and the loss of enantiocontrol likely originates from the DACP ring forming step which is reversible with its intermediate metal carbene.more » « less
An official website of the United States government
