skip to main content

Search for: All records

Creators/Authors contains: "Drake, Andrew J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (MBH) with host galaxy scaling relations, showing that the sampleMBHranges from 105.1Mto 108.2M. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg-band luminosity function can be well described by a broken power law ofϕ(Lg)Lg/Lbk0.3+Lg/Lbk2.61, withLbk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (MBH/M) ≲ 107.3, the TDE mass function followsϕ(MBH)MBH0.25, which favors a flat local BH mass function (dnBH/dlogMBHconstant). We confirm the significant rate suppression at the high-mass end (MBH≳ 107.5M), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofMgal∼ 1010M, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies with red, green, and blue colors.

    more » « less
  2. We present photometric and spectroscopic observations of the Type IIn supernova SN 2019zrk (also known as ZTF 20aacbyec). The SN shows a > 100 day precursor, with a slow rise, followed by a rapid rise to M  ≈ −19.2 in the r and g bands. The post-peak light-curve decline is well fit with an exponential decay with a timescale of ∼39 days, but it shows prominent undulations, with an amplitude of ∼1 mag. Both the light curve and spectra are dominated by an interaction with a dense circumstellar medium (CSM), probably from previous mass ejections. The spectra evolve from a scattering-dominated Type IIn spectrum to a spectrum with strong P-Cygni absorptions. The expansion velocity is high, ∼16 000 km s −1 , even in the last spectra. The last spectrum ∼110 days after the main eruption reveals no evidence for advanced nucleosynthesis. From analysis of the spectra and light curves, we estimate the mass-loss rate to be ∼4 × 10 −2   M ⊙ yr −1 for a CSM velocity of 100 km s −1 , and a CSM mass of 1  M ⊙ . We find strong similarities for both the precursor, general light curve, and spectral evolution with SN 2009ip and similar SNe, although SN 2019zrk displays a brighter peak magnitude. Different scenarios for the nature of the 09ip-class of SNe, based on pulsational pair instability eruptions, wave heating, and mergers, are discussed. 
    more » « less
  3. Abstract In recent years, many Type IIn supernovae have been found to share striking similarities with the peculiar SN 2009ip, whose true nature is still under debate. Here, we present 10 yr of observations of SN 2011fh, an interacting transient with spectroscopic and photometric similarities to SN 2009ip. SN 2011fh had an M r ∼ −16 mag brightening event, followed by a brighter M r ∼ −18 mag luminous outburst in 2011 August. The spectra of SN 2011fh are dominated by narrow to intermediate Balmer emission lines throughout its evolution, with P Cygni profiles indicating fast-moving material at ∼6400 km s −1 . HST/WFC3 observations from 2016 October revealed a bright source with M F814W ≈ −13.3 mag, indicating that we are seeing the ongoing interaction of the ejecta with the circumstellar material or that the star might be going through an eruptive phase five years after the luminous outburst of 2011. Using HST photometry of the stellar cluster around SN 2011fh, we estimated an age of ∼4.5 Myr for the progenitor, which implies a stellar mass of ∼60 M ⊙ , using single-star evolution models, or a mass range of 35–80 M ⊙ , considering a binary system. We also show that the progenitor of SN 2011fh exceeded the classical Eddington limit by a large factor in the months preceding the luminous outburst of 2011, suggesting strong super-Eddington winds as a possible mechanism for the observed mass loss. These findings favor an energetic outburst in a young and massive star, possibly a luminous blue variable. 
    more » « less
  4. Abstract

    We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post–common envelope carbon–oxygen (CO) white dwarf, and a warm donor (Teff,donor= 16,400 ± 1000 K). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant that left behind a helium star or white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave–driven orbital inspiral with ∼51σsignificance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial velocity semiamplitude of 771 ± 27 km s−1, and high-speed photometry reveals that the system is eclipsing. We detect a Chandra X-ray counterpart withLX∼ 3 × 1031erg s−1. Depending on the mass transfer rate, the system will likely either evolve into a stably mass-transferring helium cataclysmic variable, merge to become an R CrB star, or explode as a Type Ia supernova in the next million years. We predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of 24 ± 6 after 4 yr of observations. The system is the first LISA-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution.

    more » « less

    We present the identification and photometric analysis of 30 new low mass ratio (LMR) totally eclipsing contact binaries found in Catalina Sky Survey data. The LMR candidates are identified using Fourier coefficients and visual inspection. We perform a detailed scan in the parameter plane of mass ratio (q) versus inclination (i) using phoebe -0.31 scripter to derive the best (q, i) pair for the initial models. The relative physical parameters are determined from the final model of each system. A Monte Carlo approach was adopted to derive the parameter errors. The resulting parameters confirm the identification. The approximate absolute physical parameters of the systems are estimated based on the light-curve solutions and Gaia Early Data Release 3 distances. 12 out of 30 new systems have fill-out factors $f\gt 50{{\ \rm per\ cent}}$ and q ≤ 0.25 (deep contact LMR systems), and eight of them, to within errors, are extreme LMR deep systems with q ≤ 0.1. We discuss the evolutionary status of the 30 LMR systems in comparison with the most updated catalogue of LMR systems from the literature. The scenario of the LMR systems as pre-merger candidates forming fast rotating stars is investigated for all systems, new and old, based both on Hut’s stability criteria and critical instability mass ratio (qinst) relation. CSS$\_$J075848.2+125656, with q/qinst = 1.23 ± 0.23, and CSS$\_$J093010.1−021624, with q/qinst = 1.25 ± 0.23, can be considered as merger candidates. $$\begin{eqnarray} \_ \end{eqnarray}$$

    more » « less
  6. Abstract Tidal disruption events (TDEs) offer a unique way to study dormant black holes. While the number of observed TDEs has grown thanks to the emergence of wide-field surveys in the past few decades, questions regarding the nature of the observed optical, UV, and X-ray emission remain. We present a uniformly selected sample of 30 spectroscopically classified TDEs from the Zwicky Transient Facility Phase I survey operations with follow-up Swift UV and X-ray observations. Through our investigation into correlations between light-curve properties, we recover a shallow positive correlation between the peak bolometric luminosity and decay timescales. We introduce a new spectroscopic class of TDE, TDE-featureless, which are characterized by featureless optical spectra. The new TDE-featureless class shows larger peak bolometric luminosities, peak blackbody temperatures, and peak blackbody radii. We examine the differences between the X-ray bright and X-ray faint populations of TDEs in this sample, finding that X-ray bright TDEs show higher peak blackbody luminosities than the X-ray faint subsample. This sample of optically selected TDEs is the largest sample of TDEs from a single survey yet, and the systematic discovery, classification, and follow-up of this sample allows for robust characterization of TDE properties, an important stepping stone looking forward toward the Rubin era. 
    more » « less
  7. Abstract Dirty fireballs are a hypothesized class of relativistic massive-star explosions with an initial Lorentz factor Γ init below the Γ init ∼ 100 required to produce a long-duration gamma-ray burst (LGRB), but which could still produce optical emission resembling LGRB afterglows. Here we present the results of a search for on-axis optical afterglows using the Zwicky Transient Facility (ZTF). Our search yielded seven optical transients that resemble on-axis LGRB afterglows in terms of their red colors ( g − r > 0 mag), faint host galaxies ( r > 23 mag), rapid fading ( dr / dt > 1 mag day −1 ), and in some cases X-ray and radio emission. Spectroscopy of the transient emission within a few days of discovery established cosmological distances (redshift z = 0.876 to 2.9) for six of the seven events, tripling the number of afterglows with redshift measurements discovered by optical surveys without a γ -ray trigger. A likely associated LGRB (GRB 200524A, GRB 210204A, GRB 210212B, and GRB 210610B) was identified for four events (ZTF 20abbiixp/AT 2020kym, ZTF 21aagwbjr/AT 2021buv, ZTF 21aakruew/AT 2021cwd, and ZTF 21abfmpwn/AT 2021qbd) post facto, while three (ZTF 20aajnksq/AT 2020blt, ZTF 21aaeyldq/AT 2021any, and ZTF 21aayokph/AT 2021lfa) had no detected LGRB counterpart. The simplest explanation for the three “orphan” events is that they were regular LGRBs missed by high-energy satellites owing to detector sensitivity and duty cycle, although it is possible that they were intrinsically subluminous in γ -rays or viewed slightly off-axis. We rule out a scenario in which dirty fireballs have a similar energy per solid angle to LGRBs and are an order of magnitude more common. In addition, we set the first direct constraint on the ratio of the opening angles of the material producing γ -rays and the material producing early optical afterglow emission, finding that they must be comparable. 
    more » « less
  8. null (Ed.)
  9. Abstract

    We present a search for extragalactic fast blue optical transients (FBOTs) during Phase I of the Zwicky Transient Facility (ZTF). We identify 38 candidates with durations above half-maximum light 1 day <t1/2< 12 days, of which 28 have blue (gr≲ −0.2 mag) colors at peak light. Of the 38 transients (28 FBOTs), 19 (13) can be spectroscopically classified as core-collapse supernovae (SNe): 11 (8) H- or He-rich (Type II/IIb/Ib) SNe, 6 (4) interacting (Type IIn/Ibn) SNe, and 2 (1) H&He-poor (Type Ic/Ic-BL) SNe. Two FBOTs (published previously) had predominantly featureless spectra and luminous radio emission: AT2018lug (The Koala) and AT2020xnd (The Camel). Seven (five) did not have a definitive classification: AT 2020bdh showed tentative broad Hαin emission, and AT 2020bot showed unidentified broad features and was 10 kpc offset from the center of an early-type galaxy. Ten (eight) have no spectroscopic observations or redshift measurements. We present multiwavelength (radio, millimeter, and/or X-ray) observations for five FBOTs (three Type Ibn, one Type IIn/Ibn, one Type IIb). Additionally, we search radio-survey (VLA and ASKAP) data to set limits on the presence of radio emission for 24 of the transients. All X-ray and radio observations resulted in nondetections; we rule out AT2018cow-like X-ray and radio behavior for five FBOTs and more luminous emission (such as that seen in the Camel) for four additional FBOTs. We conclude that exotic transients similar to AT2018cow, the Koala, and the Camel represent a rare subset of FBOTs and use ZTF’s SN classification experiments to measure the rate to be at most 0.1% of the local core-collapse SN rate.

    more » « less
  10. null (Ed.)