skip to main content


Search for: All records

Creators/Authors contains: "Drake, Henri F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Small-scale turbulent mixing drives the upwelling of deep water masses in the abyssal ocean as part of the global overturning circulation1. However, the processes leading to mixing and the pathways through which this upwelling occurs remain insufficiently understood. Recent observational and theoretical work2–5has suggested that deep-water upwelling may occur along the ocean’s sloping seafloor; however, evidence has, so far, been indirect. Here we show vigorous near-bottom upwelling across isopycnals at a rate of the order of 100 metres per day, coupled with adiabatic exchange of near-boundary and interior fluid. These observations were made using a dye released close to the seafloor within a sloping submarine canyon, and they provide direct evidence of strong, bottom-focused diapycnal upwelling in the deep ocean. This supports previous suggestions that mixing at topographic features, such as canyons, leads to globally significant upwelling3,6–8. The upwelling rates observed were approximately 10,000 times higher than the global average value required for approximately 30 × 106m3s−1of net upwelling globally9.

     
    more » « less
    Free, publicly-accessible full text available June 27, 2025
  2. We contend that ocean turbulent fluxes should be included in the list of Essential Ocean Variables (EOVs) created by the Global Ocean Observing System. This list aims to identify variables that are essential to observe to inform policy and maintain a healthy and resilient ocean. Diapycnal turbulent fluxes quantify the rates of exchange of tracers (such as temperature, salinity, density or nutrients, all of which are already EOVs) across a density layer. Measuring them is necessary to close the tracer concentration budgets of these quantities. Measuring turbulent fluxes of buoyancy (Jb), heat (Jq), salinity (JS) or any other tracer requires either synchronous microscale (a few centimeters) measurements of both the vector velocity and the scalar (e.g., temperature) to produce time series of the highly correlated perturbations of the two variables, or microscale measurements of turbulent dissipation rates of kinetic energy (ϵ) and of thermal/salinity/tracer variance (χ), from which fluxes can be derived. Unlike isopycnal turbulent fluxes, which are dominated by the mesoscale (tens of kilometers), microscale diapycnal fluxes cannot be derived as the product of existing EOVs, but rather require observations at the appropriate scales. The instrumentation, standardization of measurement practices, and data coordination of turbulence observations have advanced greatly in the past decade and are becoming increasingly robust. With more routine measurements, we can begin to unravel the relationships between physical mixing processes and ecosystem health. In addition to laying out the scientific relevance of the turbulent diapycnal fluxes, this review also compiles the current developments steering the community toward such routine measurements, strengthening the case for registering the turbulent diapycnal fluxes as an pilot Essential Ocean Variable.

     
    more » « less
  3. Abstract Small-scale mixing drives the diabatic upwelling that closes the abyssal ocean overturning circulation. Indirect microstructure measurements of in-situ turbulence suggest that mixing is bottom-enhanced over rough topography, implying downwelling in the interior and stronger upwelling in a sloping bottom boundary layer. Tracer Release Experiments (TREs), in which inert tracers are purposefully released and their dispersion is surveyed over time, have been used to independently infer turbulent diffusivities—but typically provide estimates in excess of microstructure ones. In an attempt to reconcile these differences, Ruan and Ferrari (2021) derived exact tracer-weighted buoyancy moment diagnostics, which we here apply to quasi-realistic simulations. A tracer’s diapycnal displacement rate is exactly twice the tracer-averaged buoyancy velocity, itself a convolution of an asymmetric upwelling/downwelling dipole. The tracer’s diapycnal spreading rate, however, involves both the expected positive contribution from the tracer-averaged in-situ diffusion as well as an additional non-linear diapycnal distortion term, which is caused by correlations between buoyancy and the buoyancy velocity, and can be of either sign. Distortion is generally positive (stretching) due to bottom-enhanced mixing in the stratified interior but negative (contraction) near the bottom. Our simulations suggest that these two effects coincidentally cancel for the Brazil Basin Tracer Release Experiment, resulting in negligible net distortion. By contrast, near-bottom tracers experience leading-order distortion that varies in time. Errors in tracer moments due to realistically sparse sampling are generally small (< 20%), especially compared to the O (1) structural errors due to the omission of distortion effects in inverse models. These results suggest that TREs, although indispensable, should not be treated as “unambiguous” constraints on diapycnal mixing. 
    more » « less
  4. Abstract ABSTRACT: The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed watermass transformations are dominated by rough topography “hotspots”, where the bottom-enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger up-welling in a thin Bottom Boundary Layer (BBL). These watermass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downwards diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model which approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the non-local coupling to the basin-scale circulation. 
    more » « less
  5. Abstract The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories. 
    more » « less
  6. Abstract

    The physical circulation of the Southern Ocean sets the surface concentration and thus air‐sea exchange of. However, we have a limited understanding of the three‐dimensional circulation that brings deep carbon‐rich waters to the surface. Here, we introduce and analyze a novel high‐resolution ocean model simulation with active biogeochemistry and online Lagrangian particle tracking. We focus our attention on a subset of particles with high dissolved inorganic carbon (DIC) that originate below 1,000 m and eventually upwell into the near‐surface layer (upper 200 m). We find that 71% of the DIC‐enriched water upwelling across 1,000 m is concentrated near topographic features, which occupy just 33% of the Antarctic Circumpolar Current. Once particles upwell to the near‐surface layer, they exhibit relatively uniformlevels and DIC decorrelation timescales, regardless of their origin. Our results show that Southern Ocean bathymetry plays a key role in delivering carbon‐rich waters to the surface.

     
    more » « less