skip to main content


Search for: All records

Creators/Authors contains: "Drake, Jeremy J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Low-mass (≲1.2M) main-sequence stars lose angular momentum over time, leading to a decrease in their magnetic activity. The details of this rotation–activity relation remain poorly understood, however. Using observations of members of the ≈700 Myr old Praesepe and Hyades open clusters, we aim to characterize the rotation–activity relation for different tracers of activity at this age. To complement published data, we obtained new optical spectra for 250 Praesepe stars, new X-ray detections for 10, and new rotation periods for 28. These numbers for Hyads are 131, 23, and 137, respectively. The latter increases the number of Hyads with periods by 50%. We used these data to measure the fractional Hαand X-ray luminosities,LHα/LbolandLX/Lbol, and to calculate Rossby numbersRo. We found that at ≈700 Myr almost all M dwarfs exhibit Hαemission, with binaries having the same overall color–Hαequivalent width distribution as single stars. In theRoLHα/Lbolplane, unsaturated single stars follow a power law with indexβ= −5.9 ± 0.8 forRo> 0.3. In theRoLX/Lbolplane, we see evidence for supersaturation for single stars withRo≲ 0.01, following a power law with indexβsup=0.50.1+0.2, supporting the hypothesis that the coronae of these stars are being centrifugally stripped. We found that the criticalRovalue at which activity saturates is smaller forLX/Lbolthan forLHα/Lbol. Finally, we observed an almost 1:1 relation betweenLHα/LbolandLX/Lbol, suggesting that both the corona and the chromosphere experience similar magnetic heating.

     
    more » « less
  2. Abstract

    The proximity and duration of the tidal disruption event ASASSN-14li led to the discovery of narrow, blueshifted absorption lines in X-rays and UV. The gas seen in X-ray absorption is consistent with bound material close to the apocenter of elliptical orbital paths, or with a disk wind similar to those seen in Seyfert-1 active galactic nuclei. We present a new analysis of the deepest high-resolution XMM-Newton and Chandra spectra of ASASSN-14li. Driven by the relative strengths of He-like and H-like charge states, the data require [N/C] ≥ 2.4, in qualitative agreement with UV spectral results. Flows of the kind seen in the X-ray spectrum of ASASSN-14li were not clearly predicted in simulations of TDEs; this left open the possibility that the observed absorption might be tied to gas released in prior active galactic nucleus (AGN) activity. However, the abundance pattern revealed in this analysis points to a single star rather than a standard AGN accretion flow comprised of myriad gas contributions. The simplest explanation of the data is likely that a moderately massive star (M≳ 3M) with significant CNO processing was disrupted. An alternative explanation is that a lower mass star was disrupted that had previously been stripped of its envelope. We discuss the strengths and limitations of our analysis and these interpretations.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Rapid X-ray phase-dependent flux enhancement in the archetype classical Cepheid starδCep was observed by XMM-Newton and Chandra. We jointly analyze thermal and nonthermal components of the time-resolved X-ray spectra prior to, during, and after the enhancement. A comparison of the timescales of shock particle acceleration and energy losses is consistent with the scenario of a pulsation-driven shock wave traveling into the stellar corona and accelerating electrons to ∼GeV energies, and with Inverse Compton (IC) emission from the UV stellar background leading to the observed X-ray enhancement. The index of the nonthermal IC photon spectrum, assumed to be a simple power law in the [1–8] keV energy range, radially integrated within the shell [3–10] stellar radii, is consistent with an enhanced X-ray spectrum powered by shock-accelerated electrons. An unlikely ∼100-fold amplification via turbulent dynamo of the magnetic field at the shock propagating through density inhomogeneities in the stellar corona is required for the synchrotron emission to dominate over the IC; the lack of time correlation between radio synchrotron and stellar pulsation contributes to make synchrotron as an unlikely emission mechanism for the flux enhancement. Although current observations cannot rule out a high-flux two-temperature thermal spectrum with a negligible nonthermal component, this event might confirm for the first time the association of Cepheids pulsation with shock-accelerated GeV electrons.

     
    more » « less
  4. Abstract Energetic particles emitted by active stars are likely to propagate in astrospheric magnetized plasma and disrupted by the prior passage of energetic coronal mass ejections (CMEs). We carried out test-particle simulations of ∼GeV protons produced at a variety of distances from the M1Ve star AU Microscopii by coronal flares or traveling shocks. Particles are propagated within a large-scale quiescent three-dimensional magnetic field and stellar wind reconstructed from measured magnetograms, and within the same stellar environment following the passage of a 10 36 erg kinetic energy CME. In both cases, magnetic fluctuations with an isotropic power spectrum are overlayed onto the large-scale stellar magnetic field and particle propagation out to the two innnermost confirmed planets is examined. In the quiescent case, the magnetic field concentrates the particles into two regions near the ecliptic plane. After the passage of the CME, the closed field lines remain inflated and the reshuffled magnetic field remains highly compressed, shrinking the scattering mean free path of the particles. In the direction of propagation of the CME lobes the subsequent energetic particle (EP) flux is suppressed. Even for a CME front propagating out of the ecliptic plane, the EP flux along the planetary orbits highly fluctuates and peaks at ∼2–3 orders of magnitude higher than the average solar value at Earth, both in the quiescent and the post-CME cases. 
    more » « less
  5. Abstract We describe a process for cross-calibrating the effective areas of X-ray telescopes that observe common targets. The targets are not assumed to be “standard candles” in the classic sense, in that we assume that the source fluxes have well-defined, but a priori unknown values. Using a technique developed by Chen et al. that involves a statistical method called shrinkage estimation , we determine effective area correction factors for each instrument that bring estimated fluxes into the best agreement, consistent with prior knowledge of their effective areas. We expand the technique to allow unique priors on systematic uncertainties in effective areas for each X-ray astronomy instrument and to allow correlations between effective areas in different energy bands. We demonstrate the method with several data sets from various X-ray telescopes. 
    more » « less
  6. Abstract

    The bright starλSer hosts a hot Neptune with a minimum mass of 13.6Mand a 15.5 day orbit. It also appears to be a solar analog, with a mean rotation period of 25.8 days and surface differential rotation very similar to the Sun. We aim to characterize the fundamental properties of this system and constrain the evolutionary pathway that led to its present configuration. We detect solar-like oscillations in time series photometry from the Transiting Exoplanet Survey Satellite, and we derive precise asteroseismic properties from detailed modeling. We obtain new spectropolarimetric data, and we use them to reconstruct the large-scale magnetic field morphology. We reanalyze the complete time series of chromospheric activity measurements from the Mount Wilson Observatory, and we present new X-ray and ultraviolet observations from the Chandra and Hubble space telescopes. Finally, we use the updated observational constraints to assess the rotational history of the star and estimate the wind braking torque. We conclude that the remaining uncertainty on the stellar age currently prevents an unambiguous interpretation of the properties ofλSer, and that the rate of angular momentum loss appears to be higher than for other stars with a similar Rossby number. Future asteroseismic observations may help to improve the precision of the stellar age.

     
    more » « less
  7. Abstract

    X-ray observations of low-mass stars in open clusters are critical to understanding the dependence of magnetic activity on stellar properties and their evolution. Praesepe and the Hyades, two of the nearest, most-studied open clusters, are among the best available laboratories for examining the dependence of magnetic activity on rotation for stars with masses ≲1M. We present an updated study of the rotation–X-ray activity relation in the two clusters. We updated membership catalogs that combine pre-Gaia catalogs with new catalogs based on Gaia Data Release 2. The resulting catalogs are the most inclusive ones for both clusters: 1739 Praesepe and 1315 Hyades stars. We collected X-ray detections for cluster members, for which we analyzed, re-analyzed, or collated data from ROSAT, the Chandra X-ray Observatory, the Neil Gehrels Swift Observatory, and XMM-Newton. We have detections for 326 Praesepe and 462 Hyades members, of which 273 and 164, respectively, have rotation periods—an increase of 6× relative to what was previously available. We find that at ≈700 Myr, only M dwarfs remain saturated in X-rays, with only tentative evidence for supersaturation. We also find a tight relation between the Rossby number and fractional X-ray luminosityLX/Lbolin unsaturated single members, suggesting a power-law index between −3.2 and −3.9. Lastly, we find no difference in the coronal parameters between binary and single members. These results provide essential insight into the relative efficiency of magnetic heating of the stars’ atmospheres, thereby informing the development of robust age-rotation-activity relations.

     
    more » « less
  8. Abstract

    Two magnetic braking models are implemented inMESAfor use in theMISTstellar model grids. Stars less than about 1.3 solar masses are observed to spin down over time through interaction with their magnetized stellar winds (i.e., magnetic braking). This is the basis for gyrochronology and is fundamental to the evolution of lower-mass stars. The detailed physics behind magnetic braking are uncertain, as are 1D stellar evolution models. Thus, we calibrate our models and compare to data from open clusters. Each braking model tested here is capable of reproducing aspects of the data, with important distinctions; neither fully accounts for the observations. The Matt et al. prescription matches the slowly rotating stars observed in open clusters but tends to overestimate the presence of rapidly rotating stars. The Garraffo et al. prescription often produces too much angular momentum loss to accurately match the observed slow sequence for lower-mass stars but reproduces the bimodal nature of slowly and rapidly rotating stars observed in open clusters fairly well. Our models additionally do not reproduce the observed solar lithium depletion, corroborating previous findings that effects other than rotation may be important. We find additional evidence that some level of mass dependency may be missing in these braking models to match the rotation periods observed in clusters older than 1 Gyr better.

     
    more » « less
  9. null (Ed.)
    During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle-age, while stellar activity continues to decline. We aim to characterize this mid-life transition by combining archival stellar activity data from the Mount Wilson Observatory with asteroseismology from the Transiting Exoplanet Survey Satellite (TESS). For two stars on opposite sides of the transition (88 Leo and ρ CrB), we independently assess the mean activity levels and rotation periods previously reported in the literature. For the less active star (ρ CrB), we detect solar-like oscillations from TESS photometry, and we obtain precise stellar properties from asteroseismic modeling. We derive updated X-ray luminosities for both stars to estimate their mass-loss rates, and we use previously published constraints on magnetic morphology to model the evolutionary change in magnetic braking torque. We then attempt to match the observations with rotational evolution models, assuming either standard spin-down or weakened magnetic braking. We conclude that the asteroseismic age of ρ CrB is consistent with the expected evolution of its mean activity level, and that weakened braking models can more readily explain its relatively fast rotation rate. Future spectropolarimetric observations across a range of spectral types promise to further characterize the shift in magnetic morphology that apparently drives this mid-life transition in solar-type stars. 
    more » « less