skip to main content

Search for: All records

Creators/Authors contains: "Drapeau, David T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    The evolutionary and ecological story of coccolithophores poses questions about their heterotrophy, surviving darkness after the end‐Cretaceous asteroid impact as well as survival in the deep ocean twilight zone. Uptake of dissolved organic carbon might be an alternative nutritional strategy for supply of energy and carbon molecules.

    Using long‐term batch culture experiments, we examined coccolithophore growth and maintenance on organic compounds in darkness. Radiolabelled experiments were performed to study the uptake kinetics. Pulse–chase experiments were used to examine the uptake into unassimilated, exchangeable pools vs assimilated, nonexchangeable pools.

    We found that coccolithophores were able to survive and maintain their metabolism for up to 30 d in darkness, accomplishing about one cell division. The concentration dependence for uptake was similar to the concentration dependence for growth inCruciplacolithus neohelis, suggesting that it was taking up carbon compounds and immediately incorporating them into biomass. We recorded net incorporation of radioactivity into the particulate inorganic fraction.

    We conclude that osmotrophy provides nutritional flexibility and supports long‐term survival in light intensities well below threshold for photosynthesis. The incorporation of dissolved organic matter into particulate inorganic carbon, raises fundamental questions about the role of the alkalinity pump and the alkalinity balance in the sea.

    more » « less
  2. Abstract

    The Gulf of Maine North Atlantic Time Series (GNATS) has been run since 1998, across the Gulf of Maine (GoM), between Maine and Nova Scotia. GNATS goals are to provide ocean color satellite validation and to examine change in this coastal ecosystem. We have sampled hydrographical, biological, chemical, biogeochemical, and bio‐optical variables. After 2008, warm water intrusions (likely North Atlantic Slope Water [NASW]) were observed in the eastern GoM at 50–180 m depths. Shallow waters (<50 m) significantly warmed in winter, summer, and fall butcooledduring spring. Surface salinity and density of the GoM also significantly increased over the 20 years. Phytoplankton standing stock and primary production showed highly‐significant decreases during the period. Concentrations of phosphate increased, silicate decreased, residual nitrate [N*; nitrate‐silicate] increased, and the ratio of dissolved inorganic nitrogen:phosphate decreased, suggesting increasing nitrogen limitation. Dissolved organic carbon (DOC) and its optical indices generally increased over two decades, suggesting changes to the DOC cycle. Surface seawater carbonate chemistry showed winter periods where the aragonite saturation (Ωar) dropped below 1.6 gulf‐wide due to upward winter mixing of cool, corrosive water. However, associated with increased average GoM temperatures, Ωarhas significantly increased. These results reinforce the hypothesis that the observed decrease in surface GoM primary production resulted from a switch from Labrador Sea Water to NASW entering the GoM. A multifactor analysis shows that decreasing GoM primary production is most significantly correlated to decreases in chlorophyll and particulate organic carbon plus increases in N* and temperature.

    more » « less
  3. Abstract

    The most common biomineral produced in the contemporary ocean is calcium carbonate, including the polymorph calcite produced by coccolithophores. The surface waters of the ocean are supersaturated with respect to calcium carbonate. As a result, particulate inorganic carbon (PIC), such as calcite coccoliths, is not expected thermodynamically to dissolve in waters above the lysocline (~4500–6000 m). However, observations indicate that up to 60–80% of calcium carbonate is lost in the upper 500–1000 m of the ocean. This is hypothesized to occur in microenvironments with reduced saturation states, such as zooplankton guts. Using a new application of the highly precise14C microdiffusion technique, we show that following a period of starvation, up to 38% of ingested calcite dissolves in copepod guts. After continued feeding, our data show the gut becomes increasingly buffered, which limits further dissolution; this has been termed the Tums hypothesis (after the drugstore remedy for stomach acid). As less calcite dissolves in the gut and is instead egested in fecal pellets, the fecal pellet sinking rates double, with corresponding increases in pellet density. Our results empirically demonstrate that zooplankton guts can facilitate calcite dissolution above the chemical lysocline, and that carbon export through fecal pellet production is variable, based on the feeding history of the copepod.

    more » « less