skip to main content

Search for: All records

Creators/Authors contains: "Dravid, Vinayak P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 22, 2023
  2. Free, publicly-accessible full text available May 25, 2023
  3. Free, publicly-accessible full text available April 1, 2023
  4. Abstract Chemical vapor deposition growth of metal carbides is of great interest as this method provides large area growth of MXenes. This growth is mainly done using a melted diffusion based process; however, different morphologies in growth process is not well understood. In this work, we report deterministic synthesis of layered (non-uniform c -axis growth) and planar (uniform c -axis growth) of molybdenum carbide (Mo 2 C) using a diffusion-mediated growth. Mo-diffusion limited growth mechanism is proposed where the competition between Mo and C adatoms determines the morphology of grown crystals. Difference in thickness of catalyst at the edge and center lead to enhanced Mo diffusion which plays a vital role in determining the structure of Mo 2 C. The layered structures exhibit an expansion in the lattice confirmed by the presence of strain. Density functional theory shows consistent presence of strain which is dependent upon Mo diffusion during growth. This work demonstrates the importance of precise control of diffusion through the catalyst in determining the structure of Mo 2 C and contributes to broader understanding of metal diffusion in growth of MXenes.
    Free, publicly-accessible full text available January 1, 2023
  5. Free, publicly-accessible full text available October 20, 2022
  6. Free, publicly-accessible full text available November 15, 2022
  7. Free, publicly-accessible full text available January 1, 2023
  8. Free, publicly-accessible full text available November 17, 2022
  9. Aqueous phosphate pollution can dramatically impact ecosystems, introducing a variety of environmental, economic, and public health problems. While novel remediation tactics based on nanoparticle binding have shown considerable promise in nutrient recovery from water, they are challenging to deploy at scale. To bridge the gap between the laboratory-scale nature of these nanostructure solutions and the practical benchmarks for deploying an environmental remediation tool, we have developed a nanocomposite material. Here, an economical, readily available, porous substrate is dip coated using scalable, water-based processes with a slurry of nanostructures. These nanomaterials have tailored affinity for specific adsorption of pollutants. Our Phosphate Elimination and Recovery Lightweight (PEARL) membrane can selectively sequester up to 99% of phosphate ions from polluted waters at environmentally relevant concentrations. Moreover, mild tuning of pH promotes at will adsorption and desorption of nutrients. This timed release allows for phosphate recovery and reuse of the PEARL membrane repeatedly for numerous cycles. We combine correlative microscopy and spectroscopy techniques to characterize the complex microstructure of the PEARL membrane and to unravel the mechanism of phosphate sorption. More broadly, through the example of phosphate pollution, this work describes a platform membrane approach based on nanostructures with specific affinity coated on amore »porous structure. Such a strategy can be tuned to address other environmental remediation challenges through the incorporation of other nanomaterials.

    « less