skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Drew, Bryan T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lamiaceae are one of the largest and most economically important families of flowering plants. Despite focused study on relationships within subclades, higher-level relationships have been under-studied. Moreover, the herbaceous habit of much of the family has resulted in a poor fossil record and has hampered estimates of divergence times. Using a new dataset of five plastid loci from 178 members of Lamiaceae representing all subfamilies and nearly all tribes, we clarify major infrafamilial relationships and present a robust set of divergence times. We use this phylogenetic hypothesis as a platform to test previous hypotheses regarding the historical biogeography and evolution of major traits in the family. We confirm the placement of subfamily Nepetoideae, show continued uncertainty in the placement of subfamilies Ajugoideae and Premnoideae and highlight extreme discordance with recent results from nuclear data. Lamiaceae originated during the Late Cretaceous as woody plants with nutlet fruits and four stamens, probably in South-East Asia. Most subfamilies diverged during the Eocene, perhaps facilitated by climatic cooling. Our results provide a valuable set of secondary dates for Lamiaceae and highlight the need for focused study of subfamilies Callicarpoideae and Viticoideae. Our results also provide several hypotheses regarding trait or range-dependent diversification. 
    more » « less
  2. The genus Salvia is comprised of about 1000 species and has diversity hotspots in the Americas, East Asia, southwest Asia and the Mediterranean region. Central Asia also possesses considerable Salvia species diversity but is understudied relative to the aforementioned diversity hotspots. To help remedy this deficiency, we present a synopsis of Central Asian Salvia species based on extensive fieldwork, herbarium consultation, and literature surveys focusing on Uzbekistan, Kyrgyzstan, Tajikistan, Kazakhstan, and Turkmenistan (i.e., Central Asia). According to our final taxonomic revision, there are 41 species of native Salvia in the flora of Central Asia, 24 of which are endemic. Salvia ariana from Tajikistan and S. spinosa from Kazakhstan are documented from the respective countries for the first time, and the presence of S. tianschanica from Tajikistan and S. verticillata from Kazakhstan has been confirmed. In addition, the neotypification of S. deserta and three lectotypifications (Perovskia abrotanoides, S. bucharica and S. trautvetterii) are provided. Furthermore, we synonymized six species of Salvia that were previously reported from Central Asia, including S. intercedens, S. kopetdaghensis, S. linczevskii, S. lipskyi, S. semilanata and S. stepposa. Finally, a new species identification key for Central Asian Salvia is presented based on the new nomenclature changes and our taxonomic revision. 
    more » « less
  3. Abstract Winter annuals comprise a large fraction of warm-desert plant species, but the drivers of their diversity are little understood. One factor that has generally been overlooked is the lack of obvious means of long-distance seed dispersal in many desert-annual lineages, which could lead to genetic differentiation at small spatial scales and, ultimately, to speciation and narrow endemism. If our gene-flow hypothesis is correct, individual winter-annual species should have populations with genetic spatial structures implying short distances of gene flow. To test this idea, we sampled six populations of Eschscholzia parishii (Papaveraceae) in three pairs of watersheds within a 28-km radius in southern California. We quantified genetic diversity and structure and inferred the distance of gene flow in these populations using single nucleotide polymorphisms derived from genotyping-by-sequencing. Estimated distances of gene flow were quite small (σ = 10.4–14.9 m), with strong genetic structure observed within and between populations. Kinship declined steeply with ln distance (r2 = 0.85). Petal size and shape differed significantly between the northernmost and southernmost populations. These findings support the hypothesis that the high diversity of warm-desert winter annuals might result, in part, from genetic differentiation within species at small spatial scales driven by poor seed dispersal. 
    more » « less
  4. Abstract A fundamental question in evolutionary biology is how clades of organisms exert influence on one another. The evolution of the flower and subsequent plant/pollinator coevolution are major innovations that have operated in flowering plants to promote species radiations at a variety of taxonomic levels in the Neotropics. Here we test the hypothesis that pollination by Neotropical endemic hummingbirds drove the evolution of two unique stigma traits in correlation with other floral traits in New World Salvia (Lamiaceae). We examined morphometric shapes of stigma lobing across 400 Salvia spp., scored presence and absence of a stigma brush across Salvia, and used a suite of phylogenetic comparative methods to detect shape regime shifts, correlation of trait shifts with BayesTraits and phylogenetic generalized least square regressions, and the influence of scored pollinators on trait evolution using OUwie. We found that a major Neotropical clade of Salvia evolved a correlated set of stigma features, with a longer upper stigma lobe and stigmatic brush, following an early shift to hummingbird pollination. Evolutionary constraint is evident as subsequent shifts to bee pollination largely retained these two features. Our results support the hypothesis that hummingbirds guided the correlative shifts in corolla, anther connective, style and stigma shape in Neotropical Salvia, despite repeated shifts back to bee pollination. 
    more » « less
  5. Next-generation sequencing technologies have facilitated new phylogenomic approaches to help clarify previously intractable relationships while simultaneously highlighting the pervasive nature of incongruence within and among genomes that can complicate definitive taxonomic conclusions. Salvia L., with ∼1,000 species, makes up nearly 15% of the species diversity in the mint family and has attracted great interest from biologists across subdisciplines. Despite the great progress that has been achieved in discerning the placement of Salvia within Lamiaceae and in clarifying its infrageneric relationships through plastid, nuclear ribosomal, and nuclear single-copy genes, the incomplete resolution has left open major questions regarding the phylogenetic relationships among and within the subgenera, as well as to what extent the infrageneric relationships differ across genomes. We expanded a previously published anchored hybrid enrichment dataset of 35 exemplars of Salvia to 179 terminals. We also reconstructed nearly complete plastomes for these samples from off-target reads. We used these data to examine the concordance and discordance among the nuclear loci and between the nuclear and plastid genomes in detail, elucidating both broad-scale and species-level relationships within Salvia . We found that despite the widespread gene tree discordance, nuclear phylogenies reconstructed using concatenated, coalescent, and network-based approaches recover a common backbone topology. Moreover, all subgenera, except for Audibertia , are strongly supported as monophyletic in all analyses. The plastome genealogy is largely resolved and is congruent with the nuclear backbone. However, multiple analyses suggest that incomplete lineage sorting does not fully explain the gene tree discordance. Instead, horizontal gene flow has been important in both the deep and more recent history of Salvia . Our results provide a robust species tree of Salvia across phylogenetic scales and genomes. Future comparative analyses in the genus will need to account for the impacts of hybridization/introgression and incomplete lineage sorting in topology and divergence time estimation. 
    more » « less
  6. null (Ed.)
    Paralamium (Lamiaceae) is a monotypic genus within the subfamily Lamioideae and has a sporadic distribution in subtropical mountains of southeast Asia. Although recent studies have greatly improved our understanding of generic relationships within Lamioideae, the second most species-rich subfamily of Lamiaceae, the systematic position of Paralamium within the subfamily remains unclear. In this study, we investigate the phylogenetic placement of the genus using three datasets: (1) a 69,276 bp plastome alignment of Lamiaceae; (2) a five chloroplast DNA region dataset of tribe Pogostemoneae, and (3) a nuclear ribosomal internal transcribed spacer region dataset of Pogostemoneae. These analyses demonstrate that Paralamium is a member of Pogostemoneae and sister to the monotypic genus Craniotome . In addition, generic-level phylogenetic relationships within Pogostemoneae are also discussed, and a dichotomous key for genera within Pogostemoneae is provided. 
    more » « less