skip to main content


Search for: All records

Creators/Authors contains: "Dreyer, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A search for high-mass resonances decaying into aτ-lepton and a neutrino using proton-proton collisions at a center-of-mass energy ofs=13TeVis presented. The full run 2 data sample corresponding to an integrated luminosity of139fb1recorded by the ATLAS experiment in the years 2015–2018 is analyzed. Theτ-lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between theτ-lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on theWτνproduction cross section. HeavyWvector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard ModelWboson. For nonuniversal couplings,Wbosons are excluded for masses less than 3.5–5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross section times branching ratio are determined as a function of the lower threshold on the transverse mass of theτ-lepton and missing transverse momentum.

    <supplementary-material><permissions><copyright-statement>© 2024 CERN, for the ATLAS Collaboration</copyright-statement><copyright-year>2024</copyright-year><copyright-holder>CERN</copyright-holder></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available June 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10478900-first-measurement-forward-rapidity-gap-distribution-ppb-collisions-snn" itemprop="url"> <span class='span-link' itemprop="name">First measurement of the forward rapidity gap distribution in pPb collisions at sNN=8.16  TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevD.108.092004" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevD.108.092004  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Tumasyan, A.</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W.</span> <span class="sep">; </span><span class="author" itemprop="author">Ambrogi, F.</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T.</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Erö, J.</span> <span class="sep">; </span><span class="author" itemprop="author">Escalante Del Valle, A.</span> <span class="sep">; </span><span class="author" itemprop="author">Frühwirth, R.</span> <span class="sep">; </span><span class="author" itemprop="author">Jeitler, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Krammer, N.</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2023-11-01">November 2023</time> , Physical Review D) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevD.108.092004" target="_blank" title="Link to document DOI" data-ostiid="10478900"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10472463-two-particle-azimuthal-correlations-interactions-using-ppb-collisions-snn" itemprop="url"> <span class='span-link' itemprop="name">Two-particle azimuthal correlations in γp interactions using pPb collisions at sNN=8.16TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1016/j.physletb.2023.137905" target="_blank" title="Link to document DOI">https://doi.org/10.1016/j.physletb.2023.137905  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Tumasyan, A.</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W.</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T.</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Escalante Del Valle, A.</span> <span class="sep">; </span><span class="author" itemprop="author">Frühwirth, R.</span> <span class="sep">; </span><span class="author" itemprop="author">Jeitler, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Krammer, N.</span> <span class="sep">; </span><span class="author" itemprop="author">Lechner, L.</span> <span class="sep">; </span><span class="author" itemprop="author">Liko, D.</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2023-09-01">September 2023</time> , Physics Letters B) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1016/j.physletb.2023.137905" target="_blank" title="Link to document DOI" data-ostiid="10472463"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10472461-measurement-differential-cross-sections-production-boson-association-jets-proton-proton-collisions" itemprop="url"> <span class='span-link' itemprop="name">Measurement of differential cross sections for the production of a Z boson in association with jets in proton-proton collisions at s=13  TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevD.108.052004" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevD.108.052004  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Tumasyan, A.</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W.</span> <span class="sep">; </span><span class="author" itemprop="author">Andrejkovic, J. W.</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T.</span> <span class="sep">; </span><span class="author" itemprop="author">Chatterjee, S.</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Escalante Del Valle, A.</span> <span class="sep">; </span><span class="author" itemprop="author">Frühwirth, R.</span> <span class="sep">; </span><span class="author" itemprop="author">Jeitler, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Krammer, N.</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2023-09-01">September 2023</time> , Physical Review D) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevD.108.052004" target="_blank" title="Link to document DOI" data-ostiid="10472461"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10471595-azimuthal-correlations-within-exclusive-dijets-large-momentum-transfer-photon-lead-collisions" itemprop="url"> <span class='span-link' itemprop="name">Azimuthal Correlations within Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevLett.131.051901" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevLett.131.051901  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Tumasyan, A.</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W.</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T.</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Del Valle, A. Escalante</span> <span class="sep">; </span><span class="author" itemprop="author">Frühwirth, R.</span> <span class="sep">; </span><span class="author" itemprop="author">Jeitler, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Krammer, N.</span> <span class="sep">; </span><span class="author" itemprop="author">Lechner, L.</span> <span class="sep">; </span><span class="author" itemprop="author">Liko, D.</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2023-08-01">August 2023</time> , Physical Review Letters) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevLett.131.051901" target="_blank" title="Link to document DOI" data-ostiid="10471595"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10471527-search-cp-violating-top-quark-couplings-pp-collisions-sqrt-tev" itemprop="url"> <span class='span-link' itemprop="name">Search for CP violating top quark couplings in pp collisions at $$ \sqrt{s} $$ = 13 TeV</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1007/JHEP07(2023)023" target="_blank" title="Link to document DOI">https://doi.org/10.1007/JHEP07(2023)023  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Tumasyan, A.</span> <span class="sep">; </span><span class="author" itemprop="author">Adam, W.</span> <span class="sep">; </span><span class="author" itemprop="author">Bergauer, T.</span> <span class="sep">; </span><span class="author" itemprop="author">Dragicevic, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Escalante Del Valle, A.</span> <span class="sep">; </span><span class="author" itemprop="author">Frühwirth, R.</span> <span class="sep">; </span><span class="author" itemprop="author">Jeitler, M.</span> <span class="sep">; </span><span class="author" itemprop="author">Krammer, N.</span> <span class="sep">; </span><span class="author" itemprop="author">Lechner, L.</span> <span class="sep">; </span><span class="author" itemprop="author">Liko, D.</span> <span class="sep">; </span><span class="author">et al</span></span> <span class="year">( <time itemprop="datePublished" datetime="2023-07-01">July 2023</time> , Journal of High Energy Physics) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>A<sc>bstract</sc>

    Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb1. The search uses two observables,$$ \mathcal{O} $$O1and$$ \mathcal{O} $$O3, which are Lorentz scalars. The observable$$ \mathcal{O} $$O1is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while$$ \mathcal{O} $$O3consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model.

     
    more » « less
  2. A bstract A search for Higgs boson pair production in events with two b -jets and two τ -leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb − 1 collected at $$ \sqrt{s} $$ s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ -lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3 . 1 σ (2 . 0 σ ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance. 
    more » « less
  3. A bstract A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron–muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb − 1 at $$ \sqrt{s} $$ s = 7 TeV and about 20 fb − 1 at $$ \sqrt{s} $$ s = 8 TeV for each experiment. The combined cross-sections are determined to be 178 . 5 ± 4 . 7 pb at $$ \sqrt{s} $$ s = 7 TeV and $$ {243.3}_{-5.9}^{+6.0} $$ 243.3 − 5.9 + 6.0 pb at $$ \sqrt{s} $$ s = 8 TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be R 8 / 7 = 1 . 363 ± 0 . 032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $$ {m}_t^{\textrm{pole}}={173.4}_{-2.0}^{+1.8} $$ m t pole = 173.4 − 2.0 + 1.8 GeV and $$ {\alpha}_{\textrm{s}}\left({m}_Z\right)={0.1170}_{-0.0018}^{+0.0021} $$ α s m Z = 0.1170 − 0.0018 + 0.0021 . 
    more » « less
  4. Abstract

    Measurements of the associated production of a W boson and a charm ($${\text {c}}$$c) quark in proton–proton collisions at a centre-of-mass energy of 8$$\,\text {TeV}$$TeVare reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7$$\,\text {fb}^{-1}$$fb-1collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction$$\sigma (\text {p}\text {p}\rightarrow \text {W}+ {\text {c}}+ \text {X}) {\mathcal {B}}(\text {W}\rightarrow \ell \upnu )$$σ(ppW+c+X)B(Wν), where$$\ell = \text {e}$$=eor$$\upmu $$μ, and the cross section ratio$$\sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{+} + \bar{{\text {c}}} + \text {X}}) / \sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{-} + {\text {c}}+ \text {X}})$$σ(ppW++c¯+X)/σ(ppW-+c+X)are measured in a fiducial volume and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.

     
    more » « less
  5. Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes. 
    more » « less