skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Drivas, Theodore D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon & Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018.https://doi.org/10.1007/s00220-017-3078-4; Majda in Am Math Soc 43(281):93, 1983.https://doi.org/10.1090/memo/0281) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023.https://doi.org/10.1007/s00220-022-04626-0 624; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023.https://doi.org/10.1007/s40818-023-00162-9; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022.https://doi.org/10.1007/s00205-021-01736-2). For$$L^q_tL^r_x$$ L t q L x r suitable Leray–Hopf solutions of the$$d-$$ d - dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure$$\mathcal {P}^{s}$$ P s , which gives$$s=d-2$$ s = d - 2 as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Free, publicly-accessible full text available October 1, 2025
  3. Abstract We consider pairs of point vortices having circulations $$\Gamma _{1}$$ and $$\Gamma _{2}$$ and confined to a two-dimensional surface $$S$$. In the limit of zero initial separation $$\varepsilon $$, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $$1/\varepsilon ^{2}$$ in an magnetic field $$B$$ that is everywhere normal to the surface and of strength $$|B|=\Gamma _{1} +\Gamma _{2}$$. In the case $$\Gamma _{1}=-\Gamma _{2}$$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics. 
    more » « less
    Free, publicly-accessible full text available May 22, 2025
  4. Free, publicly-accessible full text available June 1, 2025
  5. Free, publicly-accessible full text available May 1, 2025
  6. Complex topographies exhibit universal properties when fluvial erosion dominates landscape evolution over other geomorphological processes. Similarly, we show that the solutions of a minimalist landscape evolution model display invariant behavior as the impact of soil diffusion diminishes compared to fluvial erosion at the landscape scale, yielding complete self-similarity with respect to a dimensionless channelization index. Approaching its zero limit, soil diffusion becomes confined to a region of vanishing area and large concavity or convexity, corresponding to the locus of the ridge and valley network. We demonstrate these results using one dimensional analytical solutions and two dimensional numerical simulations, supported by real-world topographic observations. Our findings on the landscape self-similarity and the localized diffusion resemble the self-similarity of turbulent flows and the role of viscous dissipation. Topographic singularities in the vanishing diffusion limit are suggestive of shock waves and singularities observed in nonlinear complex systems. 
    more » « less
  7. Abstract We study a class of ordinary differential equations with a non-Lipschitz point singularity that admits non-unique solutions through this point. As a selection criterion, we introduce stochastic regularizations depending on a parameter$$\nu $$: the regularized dynamics is globally defined for each$$\nu> 0$$, and the original singular system is recovered in the limit of vanishing$$\nu $$. We prove that this limit yields aunique statistical solutionindependent of regularization when the deterministic system possesses a chaotic attractor having a physical measure with the convergence to equilibrium property. In this case, solutions become spontaneously stochastic after passing through the singularity: they are selected randomly with an intrinsic probability distribution. 
    more » « less
  8. Abstract We consider a stochastic conservation law on the line with solution-dependent diffusivity, a super-linear, sub-quadratic Hamiltonian, and smooth, spatially-homogeneous kick-type random forcing. We show that this Markov process admits a unique ergodic spatially-homogeneous invariant measure for each mean in a non-explicit unbounded set. This generalises previous work on the stochastic Burgers equation. 
    more » « less