- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Drton, M (3)
-
Han, F (2)
-
Shi, H (2)
-
Drton, M. (1)
-
Han, F. (1)
-
Meinshausen, N (1)
-
Shi, H. (1)
-
Weihs, L (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Chatterjee (2021) introduced a simple new rank correlation coefficient that has attracted much attention recently. The coefficient has the unusual appeal that it not only estimates a population quantity first proposed by Dette et al. (2013) that is zero if and only if the underlying pair of random variables is independent, but also is asymptotically normal under independence. This paper compares Chatterjee’s new correlation coefficient with three established rank correlations that also facilitate consistent tests of independence, namely Hoeffding’s $$D$$, Blum–Kiefer–Rosenblatt’s $$R$$, and Bergsma–Dassios–Yanagimoto’s $$\tau^*$$. We compare the computational efficiency of these rank correlation coefficients in light of recent advances, and investigate their power against local rotation and mixture alternatives. Our main results show that Chatterjee’s coefficient is unfortunately rate-suboptimal compared to $$D$$, $$R$$ and $$\tau^*$$. The situation is more subtle for a related earlier estimator of Dette et al. (2013). These results favour $$D$$, $$R$$ and $$\tau^*$$ over Chatterjee’s new correlation coefficient for the purpose of testing independence.more » « less
-
Drton, M; Han, F; Shi, H. (, The annals of statistics)
-
Shi, H; Drton, M.; Han, F. (, Journal of the American Statistical Association)
-
Weihs, L; Drton, M; Meinshausen, N (, Biometrika)
An official website of the United States government

Full Text Available