skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Druga, Emmanuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical technique used to study chemicals and their transformations. However, high-eld NMR spectroscopy necessitates advanced infrastructure and even cryogen-free benchtop NMR spectrometers cannot be readily assembled from commercially available components. We demonstrate the construction of a portable zero-field NMR spectrometer employing a commercially available magnetometer and investigate its applications in analytical chemistry. In particular, J-spectra of small representative biomolecules [13C]-formic acid, [1-13C]-glycine, [2,3-13C]-fumarate, and [1-13C]-D-glucose were acquired and an approach relying on the presence of a transverse magnetic eld during the detection was investigated for relaxometry purposes. We found that water relaxation time strongly depends on the concentration of dissolved D-glucose in the range of 1-10 mM suggesting opportunities for indirect assessment of glucose concentration in aqueous solutions. Extending analytical capabilities of zero-field NMR to aqueous solutions of simple biomolecules (aminoacids, sugars and metabolites) and relaxation studies of aqueous solutions of glucose highlight the analytical potential of non-invasive and portable ZULF NMR sensors for applications outside of research laboratories. 
    more » « less