skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Du Clos, Kevin T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phytoplankton sinking is a major component of vertical ocean carbon and nutrient fluxes, and sinking is an integral component of phytoplankton biology and ecology. Much of our understanding of phytoplankton sinking derives from the settling column method (SETCOL) in which sinking speeds are calculated from the proportion of cells reaching the bottom of a water-filled column after a set time. Video-based methods are a recent alternative to SETCOL in which sinking speeds are measured by tracking the movement of individual cells in a salinity-stratified water column. In this study, we present the results of a meta-analysis showing that SETCOL produces significantly and consistently lower sinking speeds than the video method. Next, we perform a particle image velocimetry analysis, which shows that the observed discrepancy in sinking speeds between the two methods can probably be explained by weak convection currents in the SETCOLs. Finally, we discuss the implications of these results for the interpretation of past and future phytoplankton sinking speed measurements and models that rely on those measurements.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Many fishes employ distinct swimming modes for routine swimming and predator escape. These steady and escape swimming modes are characterized by dramatically differing body kinematics that lead to context-adaptive differences in swimming performance. Physonect siphonophores, such as Nanomia bijuga , are colonial cnidarians that produce multiple jets for propulsion using swimming subunits called nectophores. Physonect siphonophores employ distinct routine and steady escape behaviors but–in contrast to fishes–do so using a decentralized propulsion system that allows them to alter the timing of thrust production, producing thrust either synchronously (simultaneously) for escape swimming or asynchronously (in sequence) for routine swimming. The swimming performance of these two swimming modes has not been investigated in siphonophores. In this study, we compare the performances of asynchronous and synchronous swimming in N. bijuga over a range of colony lengths (i.e., numbers of nectophores) by combining experimentally derived swimming parameters with a mechanistic swimming model. We show that synchronous swimming produces higher mean swimming speeds and greater accelerations at the expense of higher costs of transport. High speeds and accelerations during synchronous swimming aid in escaping predators, whereas low energy consumption during asynchronous swimming may benefit N. bijuga during vertical migrations over hundreds of meters depth. Our results also suggest that when designing underwater vehicles with multiple propulsors, varying the timing of thrust production could provide distinct modes directed toward speed, efficiency, or acceleration. 
    more » « less
  3. null (Ed.)
  4. Water mixing is a critical mechanism in marine habitats that governs many important processes, including nutrient transport. Physical mechanisms, such as winds or tides, are primarily responsible for mixing effects in shallow coastal systems, but the sheltered habitats adjacent to mangroves experience very low turbulence and vertical mixing. The significance of biogenic mixing in pelagic habitats has been investigated but remains unclear. In this study, we show that the upside-down jellyfishCassiopeasp. plays a significant role with respect to biogenic contributions to water column mixing within its shallow natural habitat (<2m deep). The mixing contribution was determined by high-resolution flow velocimetry methods in both the laboratory and the natural environment. We demonstrate thatCassiopeasp. continuously pump water from the benthos upward in a vertical jet with flow velocities on the scale of centimeters per second. The volumetric flow rate was calculated to be 212 L⋅h-1for average-sized animals (8.6 cm bell diameter), which translates to turnover of the entire water column every 15 min for a median population density (29 animals per m2). In addition, we foundCassiopeasp. are capable of releasing porewater into the water column at an average rate of 2.64 mL⋅h−1per individual. The release of nutrient-rich benthic porewater combined with strong contributions to water column mixing suggests a role forCassiopeasp. as an ecosystem engineer in mangrove habitats.

     
    more » « less
  5. Eel-like fish can exhibit efficient swimming with comparatively low metabolic cost by utilizing sub-ambient pressure areas in the trough of body waves to generate thrust, effectively pulling themselves through the surrounding water. While this is understood at the fish’s preferred swimming speed, little is known about the mechanism over a full range of natural swimming speeds. We compared the swimming kinematics, hydrodynamics, and metabolic activity of juvenile coral catfish (Plotosus lineatus) across relative swimming speeds spanning two orders of magnitude from 0.2 to 2.0 body lengths (BL) per second. We used experimentally derived velocity fields to compute pressure fields and components of thrust along the body. At low speeds, thrust was primarily generated through positive pressure pushing forces. In contrast, increasing swimming speeds caused a shift in the recruitment of push and pull propulsive forces whereby sub-ambient pressure gradients contributed up to 87% of the total thrust produced during one tail-beat cycle past 0.5 BL s−1. This shift in thrust production corresponded to a sharp decline in the overall cost of transport and suggests that pull-dominated thrust in anguilliform swimmers is subject to a minimum threshold below which drag-based mechanisms are less effective. 
    more » « less
  6. null (Ed.)
    It has been well documented that animals (and machines) swimming or flying near a solid boundary get a boost in performance. This ground effect is often modelled as an interaction between a mirrored pair of vortices represented by a true vortex and an opposite sign ‘virtual vortex’ on the other side of the wall. However, most animals do not swim near solid surfaces and thus near body vortex–vortex interactions in open-water swimmers have been poorly investigated. In this study, we examine the most energetically efficient metazoan swimmer known to date, the jellyfish Aurelia aurita , to elucidate the role that vortex interactions can play in animals that swim away from solid boundaries. We used high-speed video tracking, laser-based digital particle image velocimetry (dPIV) and an algorithm for extracting pressure fields from flow velocity vectors to quantify swimming performance and the effect of near body vortex–vortex interactions. Here, we show that a vortex ring (stopping vortex), created underneath the animal during the previous swim cycle, is critical for increasing propulsive performance. This well-positioned stopping vortex acts in the same way as a virtual vortex during wall-effect performance enhancement, by helping converge fluid at the underside of the propulsive surface and generating significantly higher pressures which result in greater thrust. These findings advocate that jellyfish can generate a wall-effect boost in open water by creating what amounts to a ‘virtual wall’ between two real, opposite sign vortex rings. This explains the significant propulsive advantage jellyfish possess over other metazoans and represents important implications for bio-engineered propulsion systems. 
    more » « less
  7. Abstract

    An abundance of swimming animals have converged upon a common swimming strategy using multiple propulsors coordinated as metachronal waves. The shared kinematics suggest that even morphologically and systematically diverse animals use similar fluid dynamic relationships to generate swimming thrust. We quantified the kinematics and hydrodynamics of a diverse group of small swimming animals who use multiple propulsors, e.g. limbs or ctenes, which move with antiplectic metachronal waves to generate thrust. Here we show that even at these relatively small scales the bending movements of limbs and ctenes conform to the patterns observed for much larger swimming animals. We show that, like other swimming animals, the propulsors of these metachronal swimmers rely on generating negative pressure along their surfaces to generate forward thrust (i.e., suction thrust). Relying on negative pressure, as opposed to high pushing pressure, facilitates metachronal waves and enables these swimmers to exploit readily produced hydrodynamic structures. Understanding the role of negative pressure fields in metachronal swimmers may provide clues about the hydrodynamic traits shared by swimming and flying animals.

     
    more » « less
  8. Abstract

    A diatom's sinking speed affects its depth in the water column, which determines its access to light and nutrients. Some large, centric diatom species perform an unsteady sinking behavior in which a cell's sinking speed oscillates over more than an order of magnitude on time scales of seconds. Diatoms are known to decrease mean sinking speeds and the magnitude of unsteady sinking following exposure to nutrient replete conditions over hours to days. Here we show that on shorter time scales of minutes to hours, nutrient deprivedCoscinodiscus wailesiicellsincreasethe mean and unsteadiness of their sinking when exposed to increased nutrient concentrations. Cultures exposed to nitrate or silicate‐depleted media followed by a spike of the missing nutrient showed a sinking speed increase within the first 2 h that declined over the next 22 h. Phosphate deprived cultures did not respond similarly to a phosphate spike. In an experiment with an artificial nutricline in which cells encountered a sharp increase in nutrient concentrations over a distance of 10 cm, mean sinking speeds increased eight fold, and sinking unsteadiness increased significantly; these sinking speed changes occurred over 33 min. The contrasting short and long‐term sinking behavior responses seen in this study demonstrates the importance of examining sinking behavior over multiple time scales. Initial fast and unsteady sinking upon encountering increasing nutrient concentrations may help diatoms take advantage of patchy nutrient distributions. Longer term, slow and steady sinking may be beneficial for maximizing light exposure and minimizing energy costs from unsteady sinking.

     
    more » « less