skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Du, Qingyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. García-Blanco, Sonia M; Cheben, Pavel (Ed.)
    Free, publicly-accessible full text available March 19, 2026
  2. Abstract Ferrimagnetic iron garnets enable magnetic and magneto‐optical functionality in silicon photonics and electronics. However, garnets require high‐temperature processing for crystallization which can degrade other devices on the wafer. Here bismuth‐substituted yttrium and terbium iron garnet (Bi‐YIG and Bi‐TbIG) films are demonstrated with good magneto‐optical performance and perpendicular magnetic anisotropy (PMA) crystallized by a microheater built on a Si chip or by rapid thermal annealing. The Bi‐TbIG film crystallizes on Si at 873 K without a seed layer and exhibits good magneto‐optical properties with Faraday rotation (FR) of −1700 deg cm−1. The Bi‐YIG film also crystallizes on Si and fused SiO2at 873 K without a seed layer. Rapidly cooled films exhibit PMA due to the tensile stress caused by the thermal expansion mismatch with the substrates, increasing the magnetoelastic anisotropy by 4 kJ m−3versus slow‐cooled films. Annealing in the air for 15 s using the microheater yields fully crystallized Bi‐TbIG on the Si chip. 
    more » « less
  3. null (Ed.)