Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 26, 2026
-
Free, publicly-accessible full text available February 25, 2026
-
Neural models, including large language models (LLMs), achieve superior performance on logical reasoning tasks such as question answering. To elicit reasoning capabilities from LLMs, recent works propose using the chain-of-thought (CoT) mechanism to generate both the reasoning chain and the answer, which enhances the model’s capabilities in conducting reasoning. However, due to LLM’s uninterpretable nature and the extreme flexibility of free-form explanations, several challenges remain: such as struggling with inaccurate reasoning, hallucinations, and not aligning with human preferences. In this talk, we will focus on (1) our design of leveraging structured information (that is grounded to the context), for the explainable complex question answering and reasoning; (2) our multi-module interpretable framework for inductive reasoning, which conducts step-wise faithful reasoning with iterative feedback.more » « less
An official website of the United States government

Full Text Available