skip to main content


Search for: All records

Creators/Authors contains: "Ducoin, J.-G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. black We present a campaign designed to train the Global Rapid Advanced Network Devoted to the Multi-messenger Addicts (GRANDMA) network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on gamma-ray burst (GRB) alerts since they are expected to serve as the electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and to start prompt observations as soon as possible, so that we may better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (launched at the end of May 2023) and future missions such as SM. black We set up a dedicated infrastructure and organized a rota of follow-up advocates (FAs) to guarantee round-the-clock assistance to our telescope teams, with an aim to receive, manage, and send out observational plansto our partner telescopes. To ensure a large number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. black During the 'Ready for O4 II' phase, 11 Swift /INTEGRAL GRB triggers were selected. Of these, nine fields had been observed and three afterglows had been detected (GRB\,220403B, GRB\,220427A, GRB\,220514A) with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here, we highlight the GRB\,220427A analysis, where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of $z=0.82 and its lightcurve evolution, as well as to fit the decay slope of the afterglows and study the properties of the host galaxy. black During this eight-week-long GRB follow-up campaign, we successfully fulfilled our goal of training telescope teams for O4 and improving the associated technical toolkits. For seven of the GRB alerts, our network was able to start the first observations less than one hour after the GRB trigger time. We also characterized the network efficiency to observe GRB afterglow given the resulting time delay and limiting magnitude, and to its light curve evolution based on the observation of GRB\, 220427A.

     
    more » « less
  2. ABSTRACT

    GRB 230812B is a bright and relatively nearby (z = 0.36) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and submillimetre bands from the GRANDMA (Global Rapid Advanced Network for Multimessenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) of the GRB and compare with other analyses of this event. We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v ∼ 17 × 103 km s−1. We analyse the photometric data first using empirical fits of the flux and then with full Bayesian inference. We again strongly establish the presence of a supernova in the data, with a maximum (pseudo-)bolometric luminosity of 5.75 × 1042 erg s−1, at $15.76^{+0.81}_{-1.21}$ d (in the observer frame) after the trigger, with a half-max time width of 22.0 d. We compare these values with those of SN1998bw, SN2006aj, and SN2013dx. Our best-fitting model favours a very low density environment ($\log _{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.38^{+1.45}_{-1.60}$) and small values for the jet’s core angle $\theta _{\rm core} = 1.54^{+1.02}_{-0.81} \ \rm {deg}$ and viewing angle $\theta _{\rm obs} = 0.76^{+1.29}_{-0.76} \ \rm {deg}$. GRB 230812B is thus one of the best observed afterglows with a distinctive supernova bump.

     
    more » « less
  3. Abstract

    Object GRB 221009A is the brightest gamma-ray burst (GRB) detected in more than 50 yr of study. In this paper, we present observations in the X-ray and optical domains obtained by the GRANDMA Collaboration and the Insight Collaboration. We study the optical afterglow with empirical fitting using the GRANDMA+HXMT-LE data sets augmented with data from the literature up to 60 days. We then model numerically using a Bayesian approach, and we find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky Way dust column and moderate low-metallicity dust in the host galaxy. Using the GRANDMA+HXMT-LE+XRT data set, we find that the simplest model, where the observed afterglow is produced by synchrotron radiation at the forward external shock during the deceleration of a top-hat relativistic jet by a uniform medium, fits the multiwavelength observations only moderately well, with a tension between the observed temporal and spectral evolution. This tension is confirmed when using the augmented data set. We find that the consideration of a jet structure (Gaussian or power law), the inclusion of synchrotron self-Compton emission, or the presence of an underlying supernova do not improve the predictions. Placed in the global context of GRB optical afterglows, we find that the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the global known sample despite its extreme energetics and the peculiar afterglow evolution.

     
    more » « less
  4. ABSTRACT

    We present our follow-up observations with GRANDMA of transient sources revealed by the Zwicky Transient Facility (ZTF). Over a period of six months, all ZTF alerts were examined in real time by a dedicated science module implemented in the Fink broker, which will be used in filtering of transients discovered by the Vera C. Rubin Observatory. In this article, we present three selection methods to identify kilonova candidates. Out of more than 35 million alerts, a hundred sources have passed our selection criteria. Six were then followed-up by GRANDMA (by both professional and amateur astronomers). The majority were finally classified either as asteroids or as supernovae events. We mobilized 37 telescopes, bringing together a large sample of images, taken under various conditions and quality. To complement the orphan kilonova candidates, we included three additional supernovae alerts to conduct further observations during summer 2021. We demonstrate the importance of the amateur astronomer community that contributed images for scientific analyses of new sources discovered in a magnitude range r′ = 17 − 19 mag. We based our rapid kilonova classification on the decay rate of the optical source that should exceed 0.3 mag d−1. GRANDMA’s follow-up determined the fading rate within 1.5 ± 1.2 d post-discovery, without waiting for further observations from ZTF. No confirmed kilonovae were discovered during our observing campaign. This work will be continued in the coming months in the view of preparing for kilonova searches in the next gravitational-wave observing run O4.

     
    more » « less
  5. ABSTRACT GRANDMA (Global Rapid Advanced Network Devoted to the Multi-messenger Addicts) is a network of 25 telescopes of different sizes, including both photometric and spectroscopic facilities. The network aims to coordinate follow-up observations of gravitational-wave (GW) candidate alerts, especially those with large localization uncertainties, to reduce the delay between the initial detection and the optical confirmation. In this paper, we detail GRANDMA’s observational performance during Advanced LIGO/Advanced Virgo Observing Run 3 (O3), focusing on the second part of O3; this includes summary statistics pertaining to coverage and possible astrophysical origin of the candidates. To do so, we quantify our observation efficiency in terms of delay between GW candidate trigger time, observations, and the total coverage. Using an optimized and robust coordination system, GRANDMA followed-up about 90 per cent of the GW candidate alerts, that is 49 out of 56 candidates. This led to coverage of over 9000 deg2 during O3. The delay between the GW candidate trigger and the first observation was below 1.5 h for 50 per cent of the alerts. We did not detect any electromagnetic counterparts to the GW candidates during O3, likely due to the very large localization areas (on average thousands of degrees squares) and relatively large distance of the candidates (above 200 Mpc for 60 per cent of binary neutron star, BNS candidates). We derive constraints on potential kilonova properties for two potential BNS coalescences (GW190425 and S200213t), assuming that the events’ locations were imaged. 
    more » « less
  6. Abstract

    The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB and the Survey for Transient Astronomical Radio Emission 2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations’ O3 observing run. Here, we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts ≤1 s) we derive 50% (90%) upper limits of 1048(1049) erg for GWs at 300 Hz and 1049(1050) erg at 2 kHz, and constrain the GW-to-radio energy ratio to ≤1014−1016. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs.

     
    more » « less
  7. Abstract

    Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO-Virgo network. We search for repeated signals from strong lensing by (1) performing targeted searches for subthreshold signals, (2) calculating the degree of overlap among the intrinsic parameters and sky location of pairs of signals, (3) comparing the similarities of the spectrograms among pairs of signals, and (4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by (1) frequency-independent phase shifts in strongly lensed images, and (2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the nondetection of GW lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.

     
    more » « less
    Free, publicly-accessible full text available July 31, 2025
  8. Abstract

    We report the observation of a coalescing compact binary with component masses 2.5–4.5Mand 1.2–2.0M(all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5Mat 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of5547+127Gpc3yr1for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.

     
    more » « less
    Free, publicly-accessible full text available July 26, 2025
  9. Free, publicly-accessible full text available April 30, 2025