Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In 2007 we were part of a team that discovered the so-called “Lorimer Burst”, the first example of a new class of objects now known as fast radio bursts (FRBs). These enigmatic events are only a few ms in duration and occur at random locations on the sky at a rate of a few thousand per day. Several thousand FRBs are currently known. While it is now well established that they have a cosmological origin, and about 10% of all currently known sources have been seen to exhibit multiple bursts, the origins of these enigmatic sources are currently poorly understood. In this article, we review the discovery of FRBs and present some of the highlights from the vast body of work by an international community. Following a brief overview of the scale of the visible Universe in §1, we describe the key moments in radio astronomy (§2) that led up to the discovery of the Lorimer burst (§3). Early efforts to find more FRBs are described in §4 which led to the discovery of the first repeating source (§5). In §6, as we close out on the second decade of FRBs, we outline some of the many open questions in the field and look ahead to the coming years where many surprises are surely in store.more » « less
-
Supporting minoritized students’ participation in a science requires designing expansive notions of what counts as doing and learning science. We present the design of a middle-school biology unit about stress and body system interactions that challenges the boundaries of disciplined science and promoting social change making through consequential learning. Four core axiological commitments shaped the design of the unit: a) expanding disciplinary practice by entangling mind, body, and environment; b) supporting students’ rightful participation and expertise; c) recognizing the environment as politicized across scales; and d) supporting social change through allied political struggle. We describe how we embodied these commitments in the unit design and how they played out in the context of a 7th grade urban science classroom. This work provides another example of consequential learning environments and contributes to the theory and practice underlying their design.more » « less
-
Abstract Although neutron star–black hole binaries have been identified through mergers detected in gravitational waves, a pulsar–black hole binary has yet to be detected. While short-period binaries are detectable due to a clear signal in the pulsar’s timing residuals, effects from a long-period binary could be masked by other timing effects, allowing them to go undetected. In particular, a long-period binary measured over a small subset of its orbital period could manifest via time derivatives of the spin frequency incompatible with isolated pulsar properties. We assess the possibility of pulsars having unknown companions in long-period binaries and put constraints on the range of binary properties that may remain undetected in current data, but that may be detectable with further observations. We find that for 35% of canonical pulsars with published higher-order derivatives, the precision of measurements is not enough to confidently reject binarity (period ≳2 kyr), and that a black hole binary companion could not be ruled out for a sample of pulsars without published constraints if the period is >1 kyr. While we find no convincing cases in the literature, we put more stringent limits on orbital period and longitude of periastron for the few pulsars with published higher-order frequency derivatives (n≥ 3). We discuss the detectability of candidates and find that a sample pulsar in a 100 yr orbit could be detectable within 5–10 yr.more » « less
-
Abstract Hyperspectral imaging allows for rapid, non-destructive and objective assessments of crop health. Narrowband-hyperspectral data was used to select wavelength regions that can be exploited to identify wheat infected with soil-borne mosaic virus. First, leaf samples were scanned in the lab to investigate spectral differences between healthy and diseased leaves, including non-symptomatic and symptomatic areas within a diseased leaf. The potential of 84 commonly used vegetation indices to find infection was explored. A machine-learning approach was used to create a classification model to automatically separate pixels into symptomatic, non-symptomatic and healthy classes. The success rate of the model was 69.7% using the full spectrum. It was very encouraging that by using a subset of only four broad bands, sampled to simulate a data set from a much simpler and less costly multispectral camera, accuracy increased to 71.3%. Next, the classification models were validated on field data. Infection in the field was successfully identified using classifiers trained on the entire spectrum of the hyperspectral data acquired in a lab setting, with the best accuracy being 64.9%. Using a subset of wavelengths, simulating multispectral data, the accuracy dropped by only 3 percentage points to 61.9%. This research shows the potential of using lab scans to train classifiers to be successfully applied in the field, even when simultaneously reducing the hyperspectral data to multispectral data.more » « less
-
Abstract Based on the rate of change of its orbital period, PSR J2043+1711 has a substantial peculiar acceleration of 3.5 ± 0.8 mm s–1yr–1, which deviates from the acceleration predicted by equilibrium Milky Way (MW) models at a 4σlevel. The magnitude of the peculiar acceleration is too large to be explained by disequilibrium effects of the MW interacting with orbiting dwarf galaxies (∼1 mm s–1yr–1), and too small to be caused by period variations due to the pulsar being a redback. We identify and examine two plausible causes for the anomalous acceleration: a stellar flyby, and a long-period orbital companion. We identify a main-sequence star in Gaia DR3 and Pan-STARRS DR2 with the correct mass, distance, and on-sky position to potentially explain the observed peculiar acceleration. However, the star and the pulsar system have substantially different proper motions, indicating that they are not gravitationally bound. However, it is possible that this is an unrelated star that just happens to be located near J2043+1711 along our line of sight (chance probability of 1.6%). Therefore, we also constrain possible orbital parameters for a circumbinary companion in a hierarchical triple system with J2043+1711; the changes in the spindown rate of the pulsar are consistent with an outer object that has an orbital period of 60 kyr, a companion mass of 0.3M⊙(indicative of a white dwarf or low-mass star), and a semimajor axis of 1900 au. Continued timing and/or future faint optical observations of J2043+1711 may eventually allow us to differentiate between these scenarios.more » « lessFree, publicly-accessible full text available April 7, 2026
-
Abstract Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from misestimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to misestimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643−1224, a pulsar with unusual chromatic timing behavior. We artificially restricted these observations to a narrowband frequency range, then used both the broad- and narrowband data sets to calculate residuals with a timing model that does not account for time variations in the dispersion. By fitting the resulting residuals to a dispersion model and comparing the fits, we quantify the error introduced in the timing parameters due to using a reduced frequency range. Moreover, by calculating the autocovariance function of the parameters, we obtained a characteristic timescale over which the dispersion misestimates are correlated. For PSR J1643−1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ∼22μs due to incomplete frequency sampling, with correlations over about one month. For lower-DM pulsars, the offset is ∼7μs. This error quantification can be used to provide more robust noise modeling in the NANOGrav data, thereby increasing the sensitivity and improving the parameter estimation in gravitational wave searches.more » « less
-
A. Weinberger; W. Chen; D.Hernández-Leo; D., B. Chen (Ed.)Scientific argumentation and modeling are both core practices in learning and doing science. However, they are challenging for students. Although there is considerable literature about scientific argumentation or modeling practice in K-12 science, there are limited studies on how engaging students in modeling and scientific argumentation might be mutually supportive. This study aims to explore how 5th graders can be supported by our designed mediators as they engage in argumentation and modeling, in particular, model revision. We implemented a virtual afterschool science club to examine how our modeling tool – MEME (Model and Evidence Mapping Environment), provided evidence, peer comments, and other mediators influenced students in learning about aquatic ecosystems through developing a model. While both groups that we examined constructed strong arguments and developed good models, we show how the mediators played different roles in helping them be successful.more » « less
-
Beta-phase gallium oxide ([Formula: see text]-Ga 2 O 3 ) is a promising semiconductor for high frequency, high temperature, and high voltage applications. In addition to the [Formula: see text]-phase, numerous other polymorphs exist and understanding the competition between phases is critical to control practical devices. The phase formation sequence of Ga 2 O 3 , starting from amorphous thin films, was determined using lateral-gradient laser spike annealing at peak temperatures of 500–1400 °C on 400 μs to 10 ms timescales, with transformations characterized by optical microscopy, x-ray diffraction, and transmission electron microscopy (TEM). The resulting phase processing map showed the [Formula: see text]-phase, a defect-spinel structure, first nucleating under all annealing times for temperatures from 650 to 800 °C. The cross-sectional TEM at the onset of the [Formula: see text]-phase formation showed nucleation near the film center with no evidence of heterogeneous nucleation at the interfaces. For temperatures above 850 °C, the thermodynamically stable [Formula: see text]-phase was observed. For anneals of 1–4 ms and temperatures below 1200 °C, small randomly oriented grains were observed. Large grains were observed for anneals below 1 ms and above 1200 °C, with anneals above 4 ms and 1200 °C resulting in textured films. The formation of the [Formula: see text]-phase prior to [Formula: see text]-phase, coupled with the observed grain structure, suggests that the [Formula: see text]-phase is kinetically preferred during thermal annealing of amorphous films, with [Formula: see text]-phase subsequently forming by nucleation at higher temperatures. The low surface energy of the [Formula: see text]-phase implied by these results suggests an explanation for the widely observed [Formula: see text]-phase inclusions in [Formula: see text]-phase Ga 2 O 3 films grown by a variety of synthesis methods.more » « less
-
Abstract Pulsar timing array observations have found evidence for an isotropic gravitational-wave background with the Hellings–Downs angular correlations between pulsar pairs. This interpretation hinges on the measured shape of the angular correlations, which is predominantly quadrupolar under general relativity. Here we explore a more flexible parameterization: we expand the angular correlations into a sum of Legendre polynomials and use a Bayesian analysis to constrain their coefficients with the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). When including Legendre polynomials with multipolesℓ≥ 2, we only find a significant signal in the quadrupole with an amplitude consistent with general relativity and nonzero at the ∼95% confidence level and a Bayes factor of 200. When we include multipolesℓ≤ 1, the Bayes factor evidence for quadrupole correlations decreases by more than an order of magnitude due to evidence for a monopolar signal at approximately 4 nHz, which has also been noted in previous analyses of the NANOGrav 15 yr data. Further work needs to be done in order to better characterize the properties of this monopolar signal and its effect on the evidence for quadrupolar angular correlations.more » « lessFree, publicly-accessible full text available May 16, 2026
-
Abstract Using neural networks, we integrate the ability to account for Doppler smearing due to a pulsar’s orbital motion with the pulsar population synthesis package psrpoppy to develop accurate modeling of the observed binary pulsar population. As a first application, we show that binary neutron star systems where the two components have highly unequal mass are, on average, easier to detect than systems that are symmetric in mass. We then investigate the population of ultracompact (1.5 minutes ≤ P b ≤ 15 minutes) neutron star–white dwarf (NS–WD) and double neutron star (DNS) systems, which are promising sources for the Laser Interferometer Space Antenna gravitational-wave detector. Given the nondetection of these systems in radio surveys thus far, we estimate a 95% confidence upper limit of ∼1450 and ∼1100 ultracompact NS–WD and DNS systems in the Milky Way that are beaming toward the Earth, respectively. We also show that using survey integration times in the range 20 s–200 s with time-domain resampling will maximize the signal-to-noise ratio as well as the probability of detection of these ultracompact binary systems. Among all the large-scale radio pulsar surveys, those that are currently being carried out using archival data collected with the Arecibo radio telescope have a ∼50%–80% chance of detecting at least one of these systems using current integration integration times and ∼80%–95% using optimal integration times in the next several years.more » « less
An official website of the United States government

Full Text Available