- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
01000030000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Duong, Chi Nhan (4)
-
Luu, Khoa (4)
-
Le, Ngan (3)
-
Truong, Thanh-Dat (3)
-
Quach, Kha Gia (2)
-
Bui, Quoc-Huy (1)
-
Bui, Tien D. (1)
-
Jalata, Ibsa (1)
-
Li, Xin (1)
-
Phung, Son Lam (1)
-
Roy, Kaushik (1)
-
Seo, Han-Seok (1)
-
Tran, Minh-Triet (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Quach, Kha Gia ; Le, Ngan ; Duong, Chi Nhan ; Jalata, Ibsa ; Roy, Kaushik ; Luu, Khoa ( , Pattern Recognition)
-
Truong, Thanh-Dat ; Bui, Quoc-Huy ; Duong, Chi Nhan ; Seo, Han-Seok ; Phung, Son Lam ; Li, Xin ; Luu, Khoa ( , Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR))
-
Truong, Thanh-Dat ; Duong, Chi Nhan ; Tran, Minh-Triet ; Le, Ngan ; Luu, Khoa ( , Future Internet)Flow-based generative models have recently become one of the most efficient approaches to model data generation. Indeed, they are constructed with a sequence of invertible and tractable transformations. Glow first introduced a simple type of generative flow using an invertible 1×1 convolution. However, the 1×1 convolution suffers from limited flexibility compared to the standard convolutions. In this paper, we propose a novel invertible n×n convolution approach that overcomes the limitations of the invertible 1×1 convolution. In addition, our proposed network is not only tractable and invertible but also uses fewer parameters than standard convolutions. The experiments on CIFAR-10, ImageNet and Celeb-HQ datasets, have shown that our invertible n×n convolution helps to improve the performance of generative models significantly.more » « less