Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 4, 2024
-
Abstract The rocksalt structured (Co,Cu,Mg,Ni,Zn)O entropy-stabilized oxide (ESO) exhibits a reversible phase transformation that leads to the formation of Cu-rich tenorite and Co-rich spinel secondary phases. Using atom probe tomography, kinetic analysis, and thermodynamic modeling, we uncover the nucleation and growth mechanisms governing the formation of these two secondary phases. We find that these phases do not nucleate directly, but rather they first form Cu-rich and Co-rich precursor phases, which nucleate in regions rich in Cu and cation vacancies, respectively. These precursor phases then grow through cation diffusion and exhibit a rocksalt-like crystal structure. The Cu-rich precursor phase subsequently transforms into the Cu-rich tenorite phase through a structural distortion-based transformation, while the Co-rich precursor phase transforms into the Co-rich spinel phase through a defect-mediated transformation. Further growth of the secondary phases is controlled by cation diffusion within the primary rocksalt phase, whose diffusion behavior resembles other common rocksalt oxides.
Graphical abstract -
Abstract High-entropy oxides (HEO) with entropic stabilization and compositional flexibility have great potential application in batteries and catalysis. In this work, HEO thin films were synthesized by pulsed laser deposition (PLD) from a rock-salt (Co 0.2 Ni 0.2 Cu 0.2 Mg 0.2 Zn 0.2 )O ceramic target. The films exhibited the target’s crystal structure, were chemically homogeneous, and possessed a three-dimensional (3D) island morphology with connected randomly shaped nanopores. The effects of varying PLD laser fluence on crystal structure and morphology were explored systematically. Increasing fluence facilitates film crystallization at low substrate temperature (300 °C) and increases film thickness (60–140 nm). The lateral size of columnar grains, islands (19 nm to 35 nm in average size), and nanopores (9.3 nm to 20 nm in average size) increased with increasing fluence (3.4 to 7.0 J/cm 2 ), explained by increased kinetic energy of adatoms and competition between deposition and diffusion. Additionally, increasing fluence reduces the number of undesirable droplets observed on the film surface. The nanoporous HEO films can potentially serve as electrochemical reaction interfaces with tunable surface area and excellent phase stability. Graphical abstractmore » « less
-
The quality of parts fabricated with additive manufacturing is influenced by the flowability of the feedstock particles, which is the result of many factors, including chemistry (e.g., true density, the presence of surface oxides, and impurities), morphology (e.g., particle shape and the presence of satellites), and particle size distribution. This work investigates the relationship between powder characteristics and flow behavior of different powders using three flowability testing methods. Six powders of two compositions (316L stainless steel and AlSi10Mg), made using two different methods (gas‐ and water‐atomization), are investigated to rationalize the effect of powder chemistry and morphology on flow behavior. The results show that the true density of the powders can influence several flowability metrics. In addition, aspect ratio strongly influences the initiation of flow from a static condition, whereas average particle size strongly dictates the ease of maintaining that flow.