skip to main content

Search for: All records

Creators/Authors contains: "Dupuy, Trent J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We derive the bolometric luminosities (Lbol) of 865 field-age and 189 young ultracool dwarfs (spectral types M6–T9, including 40 new discoveries presented here) by directly integrating flux-calibrated optical to mid-infrared (MIR) spectral energy distributions (SEDs). The SEDs consist of low-resolution (R∼ 150) near-infrared (NIR; 0.8–2.5μm) spectra (including new spectra for 97 objects), optical photometry from the Pan-STARRS1 survey, and MIR photometry from the CatWISE2020 survey and Spitzer/IRAC. OurLbolcalculations benefit from recent advances in parallaxes from Gaia, Spitzer, and UKIRT, as well as new parallaxes for 19 objects from CFHT and Pan-STARRS1 presented here. Coupling ourLbolmeasurements with a new uniform age analysis for all objects, we estimate substellar masses, radii, surface gravities, and effective temperatures (Teff) using evolutionary models. We construct empirical relationships forLbolandTeffas functions of spectral type and absolute magnitude, determine bolometric corrections in optical and infrared bandpasses, and study the correlation between evolutionary model-derived surface gravities and NIR gravity classes. Our sample enables a detailed characterization ofBT-SettlandATMO2020 atmospheric model systematics as a function of spectral type and position in the NIR color–magnitude diagram. We find the greatest discrepancies between atmospheric and evolutionary model-derivedTeff(up to 800 K) and radii (up to 2.0RJup) at the M/L spectral type transition boundary. With 1054 objects, this work constitutes the largest sample to date of ultracool dwarfs with determinations of their fundamental parameters.

    more » « less

    Brown dwarfs with well-measured masses, ages, and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos–Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately $3.59_{-1.15}^{+0.87}$ Gyr at a distance of 36.99 ± 0.03 pc. In advance of our high-contrast imaging observations, we combined precision High Accuracy Radial velocity Planet Searcher (HARPS) Radial Velocities (RVs) and HGCA astrometry to predict the potential companion’s location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the L′ band, which revealed a companion with a contrast of $\Delta L^{\prime }_p = 9.20\pm 0.06$ mag at a projected separation of ≈0.35 arcsec (≈13 au) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source Markov chain Monte Carlo orbit fitting code orvara. We obtain a dynamical mass of $65.9_{-1.7}^{+2.0} M_{\rm Jup}$ that places HD 176535 B firmly in the brown dwarf regime. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of $\rm log(\mathit{ L}_{bol}/L_{\odot }) = -5.26\pm 0.07$ and a model-dependent effective temperature of 980 ± 35 K for HD 176535 B. We infer HD 176535 B to be a T dwarf from its mass, age, and luminosity. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/Keck Planet Imager and Characterizer, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph.

    more » « less

    VHS J1256−1257 AB is an ultracool dwarf binary that hosts a wide-separation planetary-mass companion that is a key target of the JWST Exoplanet Early Release Science programme. Using Keck adaptive optics imaging and aperture masking interferometry, we have determined the host binary’s orbit (a = 1.96 ± 0.03 au, P = 7.31 ± 0.02 yr, e = 0.883 ± 0.003) and measured its dynamical total mass (0.141 ± 0.008 M⊙). This total mass is consistent with VHS J1256−1257 AB being a brown dwarf binary or pair of very low-mass stars. In addition, we measured the orbital motion of VHS J1256−1257 b with respect to the barycentre of VHS J1256−1257 AB, finding that the wide companion’s orbit is also eccentric ($e=0.68^{+0.11}_{-0.10}$), with a mutual inclination of 115○ ± 14○ with respect to the central binary. This orbital architecture is consistent with VHS J1256−1257 b attaining a significant mutual inclination through dynamical scattering and thereafter driving Kozai–Lidov cycles to pump the eccentricity of VHS J1256−1257 AB. We derive a cooling age of 140 ± 20 Myr for VHS J1256−1257 AB from low-mass stellar/substellar evolutionary models. At this age, the luminosity of VHS J1256−1257 b is consistent with both deuterium-inert and deuterium-fusing evolutionary tracks. We thus find a bimodal probability distribution for the mass of VHS J1256−1257 b, either 12.0 ± 0.1 MJup or 16 ± 1 MJup, from these models. Future spectroscopic data to measure isotopologues such as HDO and CH3D could break this degeneracy and provide a strong test of substellar models at the deuterium-fusion mass boundary.

    more » « less
  4. Abstract

    We present the direct-imaging discovery of a giant planet orbiting the young star AF Lep, a 1.2Mmember of the 24 ± 3 MyrβPic moving group. AF Lep was observed as part of our ongoing high-contrast imaging program targeting stars with astrometric accelerations between Hipparcos and Gaia that indicate the presence of substellar companions. Keck/NIRC2 observations inLwith the vector vortex coronagraph reveal a point source, AF Lep b, at ≈340 mas, which exhibits orbital motion at the 6σlevel over the course of 13 months. A joint orbit fit yields precise constraints on the planet’s dynamical mass of3.20.6+0.7MJup, semimajor axis of8.41.3+1.1au, and eccentricity of0.240.15+0.27. AF Lep hosts a debris disk located at ∼50 au, but it is unlikely to be sculpted by AF Lep b, implying there may be additional planets in the system at wider separations. The stellar inclination (i*=549+11°) and orbital inclination (io=5012+9°) are in good agreement, which is consistent with the system having spin–orbit alignment. AF Lep b is the lowest-mass imaged planet with a dynamical mass measurement and highlights the promise of using astrometric accelerations as a tool to find and characterize long-period planets.

    more » « less

    51 Eri b is one of the only young planets consistent with a wide range of possible initial entropy states, including the cold-start scenario associated with some models of planet formation by core accretion. The most direct way to constrain the initial entropy of a planet is by measuring its luminosity and mass at a sufficiently young age that the initial conditions still matter. We present the tightest upper limit on 51 Eri b’s mass yet (M < 11 MJup at 2σ) using a cross-calibration of Hipparcos and Gaia  EDR3 astrometry and the orbit-fitting code orvara. We also reassess its luminosity using a direct, photometric approach, finding $\log (\rm{L_{\rm bol}}/\rm{\mathrm{L}_{\odot }}) = -5.5\pm 0.2$ dex. Combining this luminosity with the 24 ± 3 Myr age of the β Pic moving group, of which 51 Eri is a member, we derive mass distributions from a grid of evolutionary models that spans a wide range of initial entropies. We find that 51 Eri b is inconsistent with the coldest-start scenarios, requiring an initial entropy of >8 kB baryon−1 at 97 per cent confidence. This result represents the first observational constraint on the initial entropy of a potentially cold-start planet, and it continues the trend of dynamical masses for directly imaged planets pointing to warm- or hot-start formation scenarios.

    more » « less
  6. Abstract

    We present the latest and most precise characterization of the architecture for the ancient (≈11 Gyr) Kepler-444 system, which is composed of a K0 primary star (Kepler-444 A) hosting five transiting planets and a tight M-type spectroscopic binary (Kepler-444 BC) with an A–BC projected separation of 66 au. We have measured the system’s relative astrometry using the adaptive optics imaging from Keck/NIRC2 and Kepler-444 A’s radial velocities from the Hobby-Eberly Telescope and reanalyzed relative radial velocities between BC and A from Keck/HIRES. We also include the Hipparcos-Gaia astrometric acceleration and all published astrometry and radial velocities in an updated orbit analysis of BC’s barycenter. These data greatly extend the time baseline of the monitoring and lead to significant updates to BC’s barycentric orbit compared to previous work, including a larger semimajor axis (a=52.22.7+3.3au), a smaller eccentricity (e= 0.55 ± 0.05), and a more precise inclination (i=85404+03). We have also derived the first dynamical masses of B and C components. Our results suggest that Kepler-444 A’s protoplanetary disk was likely truncated by BC to a radius of ≈8 au, which resolves the previously noticed tension between Kepler-444 A’s disk mass and planet masses. Kepler-444 BC’s barycentric orbit is likely aligned with those of A’s five planets, which might be primordial or a consequence of dynamical evolution. The Kepler-444 system demonstrates that compact multiplanet systems residing in hierarchical stellar triples can form at early epochs of the universe and survive their secular evolution throughout cosmic time.

    more » « less
  7. Abstract

    We present the characterization of the low-gravity M6 dwarf 2MASS J06195260-2903592, previously identified as an unusual field object based on its strong IR excess and variable near-IR spectrum. Multiple epochs of low-resolution (R≈ 150) near-IR spectra show large-amplitude (≈0.1–0.5 mag) continuum variations on timescales of days to 12 yr, unlike the small-amplitude variability typical for field ultracool dwarfs. The variations between epochs are well-modeled as changes in the relative extinction (ΔAV≈ 2 mag). Similarly, Panoramic Survey Telescope and Rapid Response System 1 optical photometry varies on timescales as long as 11 yr (and possibly as short as an hour) and implies comparableAVchanges. Near Earth Object Wide-field Infrared Survey Explorer mid-IR light curves also suggest changes on 6 month timescales, with amplitudes consistent with the optical/near-IR extinction variations. However, near-IR spectra, near-IR photometry, and optical photometry obtained in the past year indicate that the source can also be stable on hourly and monthly timescales. From comparison to objects of similar spectral type, the total extinction of 2MASS J0619-2903 seems to beAV≈ 4–6 mag, with perhaps epochs of lower extinction. Gaia Early Data Release 3 (EDR3) finds that 2MASS J0619-2903 has a wide-separation (1.′2 = 10,450 au) stellar companion, with an isochronal age of3110+22Myr and a mass of0.300.03+0.04M. Adopting this companion’s age and EDR3 distance (145.2 ± 0.6 pc), we estimate a mass of 0.11–0.17Mfor 2MASS J0619-2903. Altogether, 2MASS J0619-2903 appears to possess an unusually long-lived primordial circumstellar disk, perhaps making it a more obscured analog to the “Peter Pan” disks found around a few M dwarfs in nearby young moving groups.

    more » « less
  8. null (Ed.)
  9. Abstract

    Model-independent masses of substellar companions are critical tools to validate models of planet and brown dwarf cooling, test their input physics, and determine the formation and evolution of these objects. In this work, we measure the dynamical mass and orbit of the young substellar companion HD 984 B. We obtained new high-contrast imaging of the HD 984 system with Keck/NIRC2 that expands the baseline of relative astrometry from 3 to 8 yr. We also present new radial velocities of the host star with the Habitable-Zone Planet Finder spectrograph at the Hobby-Eberly Telescope. Furthermore, HD 984 exhibits a significant proper motion difference between Hipparcos and Gaia EDR3. Our joint orbit fit of the relative astrometry, proper motions, and radial velocities yields a dynamical mass of 61 ± 4MJupfor HD 984 B, placing the companion firmly in the brown dwarf regime. The new fit also reveals a higher eccentricity for the companion (e= 0.76 ± 0.05) compared to previous orbit fits. Given the broad age constraint for HD 984, this mass is consistent with predictions from evolutionary models. HD 984 B’s dynamical mass places it among a small but growing list of giant planet and brown dwarf companions with direct mass measurements.

    more » « less
  10. null (Ed.)