skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Durán, Carlos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Ever since they were first detected in the interstellar medium, the radio wavelength (3.3 GHz) hyperfine-structure splitting transitions in the rotational ground state of CH were observed to show anomalous excitation. Astonishingly, this behaviour was uniformly observed towards a variety of different sources probing a wide range of physical conditions. While the observed level inversion could be explained globally by a pumping scheme involving collisions, a description of the extent of ‘over-excitation’ observed in individual sources required the inclusion of radiative processes, involving transitions at higher rotational levels. Therefore, a complete description of the excitation mechanism in the CH ground state, observed towards individual sources entails observational constraints from the rotationally excited levels of CH and in particular that of its first rotationally excited state (2Π3/2,N= 1,J= 3/2). Aims.Given the limited detections of these lines, the objective of this work is to characterise the physical and excitation properties of the rotationally excited lines of CH between the Λ-doublet levels of its2Π3/2,N= 1,J= 3/2 state near 700 MHz, and investigate their influence on the pumping mechanisms of the ground-state lines of CH. Methods.This work presents the first interferometric search for the rotationally excited lines of CH between the Λ-doublet levels of its2Π3/2,N= 1,J= 3/2 state near 700 MHz carried out using the upgraded Giant Metrewave Radio Telescope (uGMRT) array towards six star-forming regions, W51 E, Sgr B2 (M), M8, M17, W43, and DR21 Main. Results.We detected the two main hyperfine structure lines within the first rotationally excited state of CH, in absorption towards W51 E. To jointly model the physical and excitation conditions traced by lines from both the ground and first rotationally excited states of CH, we performed non-local thermodynamic equilibrium (LTE) radiative transfer calculations using the code MOLPOP-CEP. These models account for the effects of line overlap and are aided by column density constraints from the far-infrared (FIR) wavelength rotational transitions of CH that connect to the ground state and use collisional rate coefficients for collisions of CH with H, H2and electrons (the latter was computed in this work using cross-sections estimated within the Born approximation). Conclusions.The non-LTE analysis revealed that physical properties typical of diffuse and translucent clouds best reproduced the higher rates of level inversion seen in the ground-state lines at 3.3 GHz, observed at velocities near 66 km s−1along the sightline towards W51 E. In contrast, the excited lines near 700 MHz were only excited in much denser environments withnH~ 105cm−3towards which the anomalous excitation in two of the three ground state lines is quenched, but not in the 3.264 GHz line. This is in alignment with our observations and suggests that while FIR pumping and line overlap effects are essential for exciting and producing line inversion in the ground state, excitation to the first rotational level is dominated by collisional excitation from the ground state. For the rotationally excited state of CH, the models indicated low excitation temperatures and column densities of 2 × 1014cm−2. Furthermore, modelling these lines helps us understand the complexities of the spectral features observed in the 532/536 GHz rotational transitions of CH. These transitions, connecting sub-levels of the first rotationally excited state to the ground state, play a crucial role in trapping FIR radiation and enhancing the degree of inversion seen in the ground state lines. Based on the physical conditions constrained, we predict the potential of detecting hyperfine-splitting transitions arising from higher rotationally excited transitions of CH in the context of their current non-detections. 
    more » « less
  2. Abstract Frequency phase transfer (FPT) is a technique designed to increase coherence and sensitivity in radio interferometry by making use of the nondispersive nature of the troposphere to calibrate high-frequency data using solutions derived at a lower frequency. While the Korean very long baseline interferometry (VLBI) network has pioneered the use of simultaneous multiband systems for routine FPT up to an observing frequency of 130 GHz, this technique remains largely untested in the (sub)millimeter regime. A recent effort has been made to outfit dual-band systems at (sub)millimeter observatories participating in the Event Horizon Telescope (EHT) and to test the feasibility and performance of FPT up to the observing frequencies of the EHT. We present the results of simultaneous dual-frequency observations conducted in 2024 January on an Earth-sized baseline between the IRAM 30-m in Spain and the James Clerk Maxwell Telescope (JCMT) and Submillimeter Array (SMA) in Hawai‘i. We performed simultaneous observations at 86 and 215 GHz on the bright sources J0958+6533 and OJ 287, with strong detections obtained at both frequencies. We observe a strong correlation between the interferometric phases at the two frequencies, matching the trend expected for atmospheric fluctuations and demonstrating for the first time the viability of FPT for VLBI at a wavelength of  ∼1 millimeter. We show that the application of FPT systematically increases the 215 GHz coherence on all averaging timescales. In addition, the use of the colocated JCMT and SMA as a single dual-frequency station demonstrates the feasibility of paired-antenna FPT for VLBI for the first time, with implications for future array capabilities (e.g., Atacama Large Millimeter/submillimeter Array subarraying and ngVLA calibration strategies). 
    more » « less
    Free, publicly-accessible full text available March 26, 2026
  3. Abstract We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5–11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of ∼50 μ as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*’s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior. 
    more » « less
  4. Abstract We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μ as (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 10 6 M ⊙ , which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination ( i > 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 10 3 –10 5 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass. 
    more » « less