Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 17, 2025
-
Abstract We present the most precise measurements to date for the spatial extension and energy spectrum of the
γ -ray region between a pulsar’s wind nebula and the interstellar medium, better known as the halo, present around Geminga and PSR B0656+14 (Monogem) using ∼2398 days of >1 TeV data collected by the HAWC observatory. We interpret the data using a physically motivated model for the diffuseγ -ray emission generated from positrons and electrons (e±) injected by the pulsar wind nebula and inverse Compton scattering with interstellar radiation fields. We find the morphologies of the regions inside these halos are characterized by an inhibited diffusion that are approximately three orders of magnitudes smaller than the Galactic average. We also obtain the e±emission efficiencies of 6.6% and 5.1%, respectively, for Geminga and Monogem. These results have remarkable consequences for the study of the particle diffusion in the region between the pulsar wind nebulae and the interstellar medium, and for the interpretation of the flux of positrons measured by the AMS-02 experiment above 10 GeV.Free, publicly-accessible full text available October 1, 2025 -
Abstract Galactic cosmic rays (GCRs) are charged particles that reach the heliosphere almost isotropically in a wide energy range. In the inner heliosphere, the GCR flux is modulated by solar activity so that only energetic GCRs reach the lower layers of the solar atmosphere. In this work, we propose that high-energy GCRs can be used to explore the solar magnetic fields at low coronal altitudes. We used GCR data collected by the High-Altitude Water Cherenkov observatory to construct maps of GCR flux coming from the Sun’s sky direction and studied the observed GCR deficit, known as Sun shadow (SS), over a 6 yr period (2016–2021) with a time cadence of 27.3 days. We confirm that the SS is correlated with sunspot number, but we focus on the relationship between the photospheric solar magnetic field measured at different heliolatitudes and the relative GCR deficit at different energies. We found a linear relationship between the relative deficit of GCRs represented by the depth of the SS and the solar magnetic field. This relationship is evident in the observed energy range of 2.5–226 TeV, but is strongest in the range of 12.4 33.4 TeV, which implies that this is the best energy range to study the evolution of magnetic fields in the low solar atmosphere.
Free, publicly-accessible full text available April 25, 2025 -
Abstract The Galactic Halo is a key target for indirect dark matter detection. The High Altitude Water Cherenkov (HAWC) observatory is a high-energy (∼300 GeV to >100 TeV) gamma-ray detector located in central Mexico. HAWC operates via the water Cherenkov technique and has both a wide field of view of ∼ 2 sr and a >95% duty cycle, making it ideal for analyses of highly extended sources. We made use of these properties of HAWC and a new background-estimation technique optimized for extended sources to probe a large region of the Galactic Halo for dark matter signals. With this approach, we set improved constraints on dark matter annihilation and decay between masses of 10 and 100 TeV. Due to the large spatial extent of the HAWC field of view, these constraints are robust against uncertainties in the Galactic dark matter spatial profile.
-
Abstract Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays (CRs), ultra-relativistic protons, and electrons, interacting with gas and electromagnetic radiation fields in the interstellar medium. Here we present the analysis of teraelectronvolt diffuse emission from a region of the Galactic plane over the range in longitude of
l ∈ [43°, 73°], using data collected with the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal, and latitudinal distributions of the teraelectronvolt diffuse emission are shown. The radiation spectrum is compatible with the spectrum of the emission arising from a CR population with anindex similar to that of the observed CRs. When comparing with theDRAGON base model , the HAWC GDE flux is higher by about a factor of 2. Unresolved sources such as pulsar wind nebulae and teraelectronvolt halos could explain the excess emission. Finally, deviations of the Galactic CR flux from the locally measured CR flux may additionally explain the difference between the predicted and measured diffuse fluxes. -
Abstract Recently, the region surrounding eHWC J1842−035 has been studied extensively by γ-ray observatories due to its extended emission reaching up to a few hundred TeV and potential as a hadronic accelerator. In this work, we use 1910 days of cumulative data from the High Altitude Water Cherenkov (HAWC) observatory to carry out a dedicated systematic source search of the eHWC J1842−035 region. During the search, we found three sources in the region, namely, HAWC J1844−034, HAWC J1843−032, and HAWC J1846−025. We have identified HAWC J1844−034 as the extended source that emits photons with energies up to 175 TeV. We compute the spectrum for HAWC J1844−034, and by comparing with the observational results from other experiments, we have identified HESS J1843−033, LHAASO J1843−0338, and TASG J1844−038 as very-high-energy γ-ray sources with a matching origin. Also, we present and use the multiwavelength data to fit the hadronic and leptonic particle spectra. We have identified four pulsar candidates in the nearby region in which PSR J1844−0346 is found to be the most likely candidate due to its proximity to HAWC J1844−034 and the computed energy budget. We have also found SNR G28.6−0.1 as a potential counterpart source of HAWC J1844−034 for which both leptonic and hadronic scenarios are feasible.
-
Abstract We present the results of dark matter (DM) searches in a sample of 31 dwarf irregular (dIrr) galaxies within the field of view of the HAWC Observatory. dIrr galaxies are DM-dominated objects in which astrophysical gamma-ray emission is estimated to be negligible with respect to the secondary gamma-ray flux expected by annihilation or decay of weakly interacting massive particles (WIMPs). While we do not see any statistically significant DM signal in dIrr galaxies, we present the exclusion limits (95% C.L.) for annihilation cross section and decay lifetime for WIMP candidates with masses between 1 and 100 TeV. Exclusion limits from dIrr galaxies are relevant and complementary to benchmark dwarf Spheroidal (dSph) galaxies. In fact, dIrr galaxies are targets kinematically different from benchmark dSph, preserving the footprints of different evolution histories. We compare the limits from dIrr galaxies to those from ultrafaint and classical dSph galaxies previously observed with HAWC. We find that the constraints are comparable to the limits from classical dSph galaxies and ∼2 orders of magnitude weaker than the ultrafaint dSph limits.more » « less
-
Abstract The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster. Very high-energy (VHE, ≳0.1 TeV) emission from M87 has been detected by imaging air Cherenkov telescopes. Recently, marginal evidence for VHE long-term emission has also been observed by the High Altitude Water Cherenkov Observatory, a gamma-ray and cosmic-ray detector array located in Puebla, Mexico. The mechanism that produces VHE emission in M87 remains unclear. This emission originates in its prominent jet, which has been spatially resolved from radio to X-rays. In this paper, we construct a spectral energy distribution from radio to gamma rays that is representative of the nonflaring activity of the source, and in order to explain the observed emission, we fit it with a lepto-hadronic emission model. We found that this model is able to explain nonflaring VHE emission of M87 as well as an orphan flare reported in 2005.