Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Groups of interacting active particles, insects, or humans can form clusters that hinder the goals of the collective; therefore, development of robust strategies for control of such clogs is essential, particularly in confined environments. Our biological and robophysical excavation experiments, supported by computational and theoretical models, reveal that digging performance can be robustly optimized within the constraints of narrow tunnels by individual idleness and retreating. Tools from the study of dense particulate ensembles elucidate how idleness reduces the frequency of flow-stopping clogs and how selective retreating reduces cluster dissolution time for the rare clusters that still occur. Our results point to strategies by which dense active matter and swarms can become task capable without sophisticated sensing, planning, and global control of the collective.more » « less
-
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 andbeam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to befor thesetting andfor thesetting.
Published by the American Physical Society 2024 Free, publicly-accessible full text available November 1, 2025 -
A search for high-mass resonances decaying into a-lepton and a neutrino using proton-proton collisions at a center-of-mass energy ofis presented. The full run 2 data sample corresponding to an integrated luminosity ofrecorded by the ATLAS experiment in the years 2015–2018 is analyzed. The-lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between the-lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on theproduction cross section. Heavyvector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard Modelboson. For nonuniversal couplings,bosons are excluded for masses less than 3.5–5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross section times branching ratio are determined as a function of the lower threshold on the transverse mass of the-lepton and missing transverse momentum.
© 2024 CERN, for the ATLAS Collaboration 2024 CERN Free, publicly-accessible full text available June 1, 2025 -
Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.more » « less