skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Duval, Christine E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 15, 2026
  2. Separating lanthanides from actinides is a common task in rare earth element mining and processing, medical isotope purification, nuclear forensics, and radioanalytical chemistry. Membrane adsorbers are emerging as a promising platform to perform such adsorptive separations. In this work, functional membrane adsorbers are synthesized by coating poly(ether sulfone) microfiltration membranes with polymeric ligands that contain ethylene glycol methacrylate phosphate (EGMP) as the ion-coordinating moiety. The composition of the polymeric ligands is controlled by copolymerizing EGMP with butyl methacrylate (BuMA) and 2-hydroxy ethyl methacrylate (HEMA). Equilibrium and time-resolved adsorption data were modeled to understand the thermodynamics and kinetics of complexation of UO22+ at pH 1 and pH 4. The data are compared to previously reported data for La3+ and the feasibility of on-column separation of UO22+ over La3+ is assessed by transport modeling in MATLAB. All synthesized membranes are selective for UO22+ over La3+. At pH 1, the separation is improved with the presence of a nonbinding comonomer. At pH 4, the separation is worsened by the presence of a nonbinding comonomer. 
    more » « less
  3. Rare earth elements (REEs) are crucial for clean energy technologies but are predominantly purified by solvent extraction using strong acids. This work explores two adsorbents with selective chemistry based on lanmodulin-derived peptides. Two membrane adsorber platforms were synthesized: (1) a poly(vinylbenzyl chloride) membrane with a grafted poly(allyl methacrylate) network and (2) a poly(arylene ether sulfone)membrane with allyl pendant groups. Both membrane adsorbers were functionalized with LanM1 peptides via a thiol−ene click reaction. The morphology, surface chemistry, and adsorption of select trivalent lanthanides (La, Ce, Pr, Nd) were characterized in pH 4−5 solutions, mimicking phosphogypsum waste streams. Results from the adsorption experiments indicate that the lanmodulin peptide sequence maintains its ability to bind when it is immobilized on the surface of polymer fibers for some ions. Despite the different adsorbent designs, the measured capacity of both adsorbents is on the same order of magnitude, which may be explained by differences in the surface area of the fibers 
    more » « less
  4. Rare earth elements (REEs) are a vital part of many technologies with particular importance to the renewable energy sector and there is a pressing need for environmentally friendly and sustainable processes to recover and recycle them from waste streams. Functionalized polymer scaffolds are a promising means to recover REEs due to the ability to engineer both transport properties of the porous material and specificity for target ions. In this work, REE adsorbing polymer scaffolds were synthesized by first introducing poly(glycidyl methacrylate) (GMA) brushes onto porous polyvinylidene fluoride (PVDF) surface through activator generated electron transfer atom transfer radical polymerization (AGET ATRP). Azide moieties were then introduced through a ring opening reaction of GMA. Subsequently, REE-binding peptides were conjugated to the polymer surface through copper catalyzed azide alkyne cycloaddition (CuAAC) click chemistry. The presence of GMA, azide, and peptide was confirmed through Fourier transform infrared spectroscopy. Polymer scaffolds functionalized with the REE-binding peptide bound cerium, while polymer scaffolds functionalized with a scrambled control peptide bound significantly less cerium. Importantly, this study shows that the REE binding peptide retains its functionality when bound to a polymer surface. The conjugation strategy employed in this work can be used to introduce peptides onto other polymeric surfaces and tailor surface specificity for a wide variety of ions and small molecules. 
    more » « less