skip to main content

Search for: All records

Creators/Authors contains: "Duvnjak, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hardmore »scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy.« less
    Free, publicly-accessible full text available December 1, 2023
  2. Abstract During LHC Run 2 (2015–2018) the ATLAS Level-1 topological trigger allowed efficient data-taking by the ATLAS experiment at luminosities up to 2.1 $$\times $$ × 10 $$^{34}$$ 34  cm $$^{-2}$$ - 2 s $$^{-1}$$ - 1 , which exceeds the design value by a factor of two. The system was installed in 2016 and operated in 2017 and 2018. It uses Field Programmable Gate Array processors to select interesting events by placing kinematic and angular requirements on electromagnetic clusters, jets, $$\tau $$ τ -leptons, muons and the missing transverse energy. It allowed to significantly improve the background event rejection andmore »signal event acceptance, in particular for Higgs and B -physics processes.« less
    Free, publicly-accessible full text available January 1, 2023
  3. Free, publicly-accessible full text available January 1, 2023
  4. A bstract A search for the exotic decay of the Higgs boson ( H ) into a b $$ \overline{b} $$ b ¯ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb − 1 of pp collisions at $$ \sqrt{s} $$ s = 13 TeV. The search targets events from ZH production in an NMSSM scenario where H → $$ {\overset{\sim }{\chi}}_2^0{\overset{\sim }{\chi}}_1^0 $$ χ ~ 2 0 χ ~ 1 0 , with $$ {\overset{\sim }{\chi}}_2^0 $$ χ ~ 2 0 → $$ a{\overset{\sim }{\chi}}_1^0more »$$ a χ ~ 1 0 , where a is a light pseudoscalar Higgs boson and $$ {\overset{\sim }{\chi}}_{1,2}^0 $$ χ ~ 1 , 2 0 are the two lightest neutralinos. The decay of the a boson into a pair of b -quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a b -quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $$ {\overset{\sim }{\chi}}_2^0 $$ χ ~ 2 0 , $$ {\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 and a boson.« less
    Free, publicly-accessible full text available January 1, 2023
  5. Free, publicly-accessible full text available December 1, 2022
  6. A bstract The fragmentation properties of jets containing b -hadrons are studied using charged B mesons in 139 fb − 1 of pp collisions at $$ \sqrt{s} $$ s = 13 TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The B mesons are reconstructed using the decay of B ± into J/ψK ± , with the J/ψ decaying into a pair of muons. Jets are reconstructed using the anti- k t algorithm with radius parameter R = 0 . 4. The measurement determines the longitudinal and transverse momentum profiles of the reconstructedmore »B hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.« less
    Free, publicly-accessible full text available December 1, 2022
  7. Abstract Several improvements to the ATLAS triggers used to identify jets containing b -hadrons ( b -jets) were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018. These changes include reconfiguring the b -jet trigger software to improve primary-vertex finding and allow more stable running in conditions with high pile-up, and the implementation of the functionality needed to run sophisticated taggers used by the offline reconstruction in an online environment. These improvements yielded an order of magnitude better light-flavour jet rejection for the same b -jet identification efficiency compared to the performance in Run 1 (2011–2012).more »The efficiency to identify b -jets in the trigger, and the conditional efficiency for b -jets that satisfy offline b -tagging requirements to pass the trigger are also measured. Correction factors are derived to calibrate the b -tagging efficiency in simulation to match that observed in data. The associated systematic uncertainties are substantially smaller than in previous measurements. In addition, b -jet triggers were operated for the first time during heavy-ion data-taking, using dedicated triggers that were developed to identify semileptonic b -hadron decays by selecting events with geometrically overlapping muons and jets.« less
    Free, publicly-accessible full text available December 1, 2022
  8. Abstract A search for chargino–neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $$\sqrt{s} = 13$$ s = 13  TeV pp collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139  $$\hbox {fb}^{-1}$$ fb - 1 . No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production andmore »decay of charginos ( $${\tilde{\chi }}^\pm _1$$ χ ~ 1 ± ) and neutralinos ( $${\tilde{\chi }}^0_2$$ χ ~ 2 0 ) are considered. For pure higgsino $${\tilde{\chi }}^\pm _1{\tilde{\chi }}^0_2$$ χ ~ 1 ± χ ~ 2 0 pair-production scenarios, exclusion limits at 95% confidence level are set on $${\tilde{\chi }}^0_2$$ χ ~ 2 0 masses up to 210 GeV. Limits are also set for pure wino $${\tilde{\chi }}^\pm _1{\tilde{\chi }}^0_2$$ χ ~ 1 ± χ ~ 2 0 pair production, on $${\tilde{\chi }}^0_2$$ χ ~ 2 0 masses up to 640 GeV for decays via on-shell W and Z bosons, up to 300 GeV for decays via off-shell W and Z bosons, and up to 190 GeV for decays via W and Standard Model Higgs bosons.« less
    Free, publicly-accessible full text available December 1, 2022
  9. Free, publicly-accessible full text available December 1, 2022
  10. Abstract A search for R-parity-violating supersymmetry in final states characterized by high jet multiplicity, at least one isolated light lepton and either zero or at least three b -tagged jets is presented. The search uses $${139}\,{\text {fb}^{-1}}$$ 139 fb - 1 of $$\sqrt{s} = {13}\hbox { TeV}$$ s = 13 TeV proton–proton collision data collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature gluino production, top-squark production, or electroweakino production. The dominant sources of background are estimated using a data-driven model, based onmore »observables at medium jet multiplicity, to predict the b -tagged jet multiplicity distribution at the higher jet multiplicities used in the search. Machine-learning techniques are used to reach sensitivity to electroweakino production, extending the data-driven background estimation to the shape of the machine-learning discriminant. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted, reaching as high as 2.4 TeV in gluino mass, 1.35 TeV in top-squark mass, and 320 (365) GeV in higgsino (wino) mass.« less
    Free, publicly-accessible full text available November 1, 2022