skip to main content

Search for: All records

Creators/Authors contains: "Dy, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Banerjee, A. ; Fukumizu, K. (Ed.)
    Variational autoencoders (VAEs) optimize an objective that comprises a reconstruction loss (the distortion) and a KL term (the rate). The rate is an upper bound on the mutual information, which is often interpreted as a regularizer that controls the degree of compression. We here examine whether inclusion of the rate term also improves generalization. We perform rate-distortion analyses in which we control the strength of the rate term, the network capacity, and the difficulty of the generalization problem. Lowering the strength of the rate term paradoxically improves generalization in most settings, and reducing the mutual information typically leads to underfitting. Moreover, we show that generalization performance continues to improve even after the mutual information saturates, indicating that the gap on the bound (i.e. the KL divergence relative to the inference marginal) affects generalization. This suggests that the standard spherical Gaussian prior is not an inductive bias that typically improves generalization, prompting further work to understand what choices of priors improve generalization in VAEs.
  2. Kernel dimensionality reduction (KDR) algorithms find a low dimensional representation of the original data by optimizing kernel dependency measures that are capable of capturing nonlinear relationships. The standard strategy is to first map the data into a high dimensional feature space using kernels prior to a projection onto a low dimensional space. While KDR methods can be easily solved by keeping the most dominant eigenvectors of the kernel matrix, its features are no longer easy to interpret. Alternatively, Interpretable KDR (IKDR) is different in that it projects onto a subspace \textit{before} the kernel feature mapping, therefore, the projection matrix can indicate how the original features linearly combine to form the new features. Unfortunately, the IKDR objective requires a non-convex manifold optimization that is difficult to solve and can no longer be solved by eigendecomposition. Recently, an efficient iterative spectral (eigendecomposition) method (ISM) has been proposed for this objective in the context of alternative clustering. However, ISM only provides theoretical guarantees for the Gaussian kernel. This greatly constrains ISM's usage since any kernel method using ISM is now limited to a single kernel. This work extends the theoretical guarantees of ISM to an entire family of kernels, thereby empowering ISM tomore »solve any kernel method of the same objective. In identifying this family, we prove that each kernel within the family has a surrogate Φ matrix and the optimal projection is formed by its most dominant eigenvectors. With this extension, we establish how a wide range of IKDR applications across different learning paradigms can be solved by ISM. To support reproducible results, the source code is made publicly available on \url{https://github.com/ANONYMIZED}« less
  3. In many supervised learning settings, elicited labels comprise pairwise comparisons or rankings of samples. We propose a Bayesian inference model for ranking datasets, allowing us to take a probabilistic approach to ranking inference. Our probabilistic assumptions are motivated by, and consistent with, the so-called Plackett-Luce model. We propose a variational inference method to extract a closed-form Gaussian posterior distribution. We show experimentally that the resulting posterior yields more reliable ranking predictions compared to predictions via point estimates.
  4. Table of Contents: Foreword by the CI 2016 Workshop Chairs …………………………………vi Foreword by the CI 2016 Steering Committee ..…………………………..…..viii List of Organizing Committee ………………………….……....x List of Registered Participants .………………………….……..xi Acknowledgement of Sponsors ……………………………..…xiv Hackathon and Workshop Agenda .………………………………..xv Hackathon Summary .………………………….…..xviii Invited talks - abstracts and links to presentations ………………………………..xxi Proceedings: 34 short research papers ……………………………….. 1-135 Papers 1. BAYESIAN MODELS FOR CLIMATE RECONSTRUCTION FROM POLLEN RECORDS ..................................... 1 Lasse Holmström, Liisa Ilvonen, Heikki Seppä, Siim Veski 2. ON INFORMATION CRITERIA FOR DYNAMIC SPATIO-TEMPORAL CLUSTERING ..................................... 5 Ethan D. Schaeffer, Jeremy M. Testa, Yulia R. Gel, Vyacheslav Lyubchich 3. DETECTING MULTIVARIATE BIOSPHERE EXTREMES ..................................... 9 Yanira Guanche García, Erik Rodner, Milan Flach, Sebastian Sippel, Miguel Mahecha, Joachim Denzler 4. SPATIO-TEMPORAL GENERATIVE MODELS FOR RAINFALL OVER INDIA ..................................... 13 Adway Mitra 5. A NONPARAMETRIC COPULA BASED BIAS CORRECTION METHOD FOR STATISTICAL DOWNSCALING ..................................... 17 Yi Li, Adam Ding, Jennifer Dy 6. DETECTING AND PREDICTING BEAUTIFUL SUNSETS USING SOCIAL MEDIA DATA ..................................... 21 Emma Pierson 7. OCEANTEA: EXPLORING OCEAN-DERIVED CLIMATE DATA USING MICROSERVICES ..................................... 25 Arne N. Johanson, Sascha Flögel, Wolf-Christian Dullo, Wilhelm Hasselbring 8. IMPROVED ANALYSIS OF EARTH SYSTEM MODELS AND OBSERVATIONS USING SIMPLE CLIMATE MODELS ..................................... 29 Balu Nadiga, Nathanmore »Urban 9. SYNERGY AND ANALOGY BETWEEN 15 YEARS OF MICROWAVE SST AND ALONG-TRACK SSH ..................................... 33 Pierre Tandeo, Aitor Atencia, Cristina Gonzalez-Haro 10. PREDICTING EXECUTION TIME OF CLIMATE-DRIVEN ECOLOGICAL FORECASTING MODELS ..................................... 37 Scott Farley and John W. Williams 11. SPATIOTEMPORAL ANALYSIS OF SEASONAL PRECIPITATION OVER US USING CO-CLUSTERING ..................................... 41 Mohammad Gorji–Sefidmazgi, Clayton T. Morrison 12. PREDICTION OF EXTREME RAINFALL USING HYBRID CONVOLUTIONAL-LONG SHORT TERM MEMORY NETWORKS ..................................... 45 Sulagna Gope, Sudeshna Sarkar, Pabitra Mitra 13. SPATIOTEMPORAL PATTERN EXTRACTION WITH DATA-DRIVEN KOOPMAN OPERATORS FOR CONVECTIVELY COUPLED EQUATORIAL WAVES ..................................... 49 Joanna Slawinska, Dimitrios Giannakis 14. COVARIANCE STRUCTURE ANALYSIS OF CLIMATE MODEL OUTPUT ..................................... 53 Chintan Dalal, Doug Nychka, Claudia Tebaldi 15. SIMPLE AND EFFICIENT TENSOR REGRESSION FOR SPATIOTEMPORAL FORECASTING ..................................... 57 Rose Yu, Yan Liu 16. TRACKING OF TROPICAL INTRASEASONAL CONVECTIVE ANOMALIES ..................................... 61 Bohar Singh, James L. Kinter 17. ANALYSIS OF AMAZON DROUGHTS USING SUPERVISED KERNEL PRINCIPAL COMPONENT ANALYSIS ..................................... 65 Carlos H. R. Lima, Amir AghaKouchak 18. A BAYESIAN PREDICTIVE ANALYSIS OF DAILY PRECIPITATION DATA ..................................... 69 Sai K. Popuri, Nagaraj K. Neerchal, Amita Mehta 19. INCORPORATING PRIOR KNOWLEDGE IN SPATIO-TEMPORAL NEURAL NETWORK FOR CLIMATIC DATA ..................................... 73 Arthur Pajot, Ali Ziat, Ludovic Denoyer, Patrick Gallinari 20. DIMENSIONALITY-REDUCTION OF CLIMATE DATA USING DEEP AUTOENCODERS ..................................... 77 Juan A. Saenz, Nicholas Lubbers, Nathan M. Urban 21. MAPPING PLANTATION IN INDONESIA ..................................... 81 Xiaowei Jia, Ankush Khandelwal, James Gerber, Kimberly Carlson, Paul West, Vipin Kumar 22. FROM CLIMATE DATA TO A WEIGHTED NETWORK BETWEEN FUNCTIONAL DOMAINS ..................................... 85 Ilias Fountalis, Annalisa Bracco, Bistra Dilkina, Constantine Dovrolis 23. EMPLOYING SOFTWARE ENGINEERING PRINCIPLES TO ENHANCE MANAGEMENT OF CLIMATOLOGICAL DATASETS FOR CORAL REEF ANALYSIS ..................................... 89 Mark Jenne, M.M. Dalkilic, Claudia Johnson 24. Profiler Guided Manual Optimization for Accelerating Cholesky Decomposition on R Environment ..................................... 93 V.B. Ramakrishnaiah, R.P. Kumar, J. Paige, D. Hammerling, D. Nychka 25. GLOBAL MONITORING OF SURFACE WATER EXTENT DYNAMICS USING SATELLITE DATA ..................................... 97 Anuj Karpatne, Ankush Khandelwal and Vipin Kumar 26. TOWARD QUANTIFYING TROPICAL CYCLONE RISK USING DIAGNOSTIC INDICES .................................... 101 Erica M. Staehling and Ryan E. Truchelut 27. OPTIMAL TROPICAL CYCLONE INTENSITY ESTIMATES WITH UNCERTAINTY FROM BEST TRACK DATA .................................... 105 Suz Tolwinski-Ward 28. EXTREME WEATHER PATTERN DETECTION USING DEEP CONVOLUTIONAL NEURAL NETWORK .................................... 109 Yunjie Liu, Evan Racah, Prabhat, Amir Khosrowshahi, David Lavers, Kenneth Kunkel, Michael Wehner, William Collins 29. INFORMATION TRANSFER ACROSS TEMPORAL SCALES IN ATMOSPHERIC DYNAMICS .................................... 113 Nikola Jajcay and Milan Paluš 30. Identifying precipitation regimes in China using model-based clustering of spatial functional data .................................... 117 Haozhe Zhang, Zhengyuan Zhu, Shuiqing Yin 31. RELATIONAL RECURRENT NEURAL NETWORKS FOR SPATIOTEMPORAL INTERPOLATION FROM MULTI-RESOLUTION CLIMATE DATA .................................... 121 Guangyu Li, Yan Liu 32. OBJECTIVE SELECTION OF ENSEMBLE BOUNDARY CONDITIONS FOR CLIMATE DOWNSCALING .................................... 124 Andrew Rhines, Naomi Goldenson 33. LONG-LEAD PREDICTION OF EXTREME PRECIPITATION CLUSTER VIA A SPATIO-TEMPORAL CONVOLUTIONAL NEURAL NETWORK .................................... 128 Yong Zhuang, Wei Ding 34. MULTIPLE INSTANCE LEARNING FOR BURNED AREA MAPPING USING MULTI –TEMPORAL REFLECTANCE DATA .................................... 132 Guruprasad Nayak, Varun Mithal, Vipin Kumar« less