- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
10
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
E. Malaia, L.K. Ford (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
& Baek, Y. (0)
-
& Bahabry, Ahmed. (0)
-
& Bai, F. (0)
-
& Balasubramanian, R. (0)
-
& Barth-Cohen, L. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
2022 USENIX Annual Technical Conference (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Objectively differentiating patient mental states based on electrical activity, as opposed to overt behavior, is a fundamental neuroscience problem with medical applications, such as identifying patients in locked-in state vs. coma. Electroencephalography (EEG), which detects millisecond-level changes in brain activity across a range of frequencies, allows for assessment of external stimulus processing by the brain in a non-invasive manner. We applied machine learning methods to 26-channel EEG data of 24 fluent Deaf signers watching videos of sign language sentences (comprehension condition), and the same videos reversed in time (non-comprehension condition), to objectively separate vision-based high-level cognition states. While spectrotemporal parameters of the stimuli were identical in comprehension vs. non-comprehension conditions, the neural responses of participants varied based on their ability to linguistically decode visual data. We aimed to determine which subset of parameters (specific scalp regions or frequency ranges) would be necessary and sufficient for high classification accuracy of comprehension state. Optical flow, characterizing distribution of velocities of objects in an image, was calculated for each pixel of stimulus videos using MATLAB Vision toolbox. Coherence between optical flow in the stimulus and EEG neural response (per video, per participant) was then computed using canonical component analysis with NoiseTools toolbox. Peakmore »