skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "E. Temeche, S. Indris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Recently, γ-LiAlO2 has attracted considerable attention as a coating in Li-ion battery electrodes. However, its potential as a Li+ ceramic electrolyte is limited due to its poor ionic conductivity (<10−10 S cm−1). Here, we demonstrate an effective method of processing LiAlO2 membranes (<50 μm) using nanopowders (NPs) produced via liquid-feed flame spray pyrolysis(LF-FSP). Membranes consisting of selected mixtures of lithium aluminate polymorphs and Li contents were processed byconventional tape casting of NPs followed by thermocompressionof the green films (100 °C/10 kpsi/10 min). The sintered greenfilms (1100 °C/2 h/air) present a mixture of LiAlO2 (∼72 wt %)and LiAl5O8 (∼27 wt %) phases, offering ionic conductivities (>10−6 S cm−1) at ambient with an activation energy of 0.5 eV. This greatly increases their potential utility as ceramic electrolytes for all-solid-state batteries, which could simplify battery designs, significantly reduce costs, and increase their safety. Furthermore, a solid-state Li/Li3.1AlO2/Li symmetric cell was assembled and galvanostatically cycled at 0.375 mA cm−2 current density, exhibiting a transference number ≈ 1. 
    more » « less