skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Eade, Rosie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Given uncertainty in the processes involved in polar amplification, elucidating the role of poleward heat and moisture transport is crucial. The Polar Amplification Model Intercomparison Project (PAMIP) permits robust separation of the effects of sea ice loss from sea surface warming under climate change. We utilize a moist isentropic circulation framework that accounts for moisture transport, condensation, and eddy transport, in order to analyze the circulation connecting the mid‐latitudes and the Arctic. In PAMIP's atmospheric general circulation model experiments, prescribed sea ice loss reduces poleward heat transport (PHT) by warming the returning moist isentropic circulation at high latitudes, while prescribed warming of the ocean surface increases PHT by strengthening the moist isentropic circulation. Inter‐model spread of PHT into the Arctic reflects the tug‐of‐war between sea‐ice and surface‐warming effects.

     
    more » « less