skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eagle, Meagan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Arctic is experiencing warming and ecological shifts due to climate change and the compounding effects of polar amplification. Arctic Alaskan coastal marsh environments, such as the Cape Espenberg barrier beach system, offer an opportunity to determine the carbon cycle response to changing climate by examining sediment records that have been preserved through time as shoreline-parallel, linear geometry prograding geomorphic features. This study determines the carbon and mineral accumulation trends in marsh environments at Cape Espenberg for both paleo (~776 CE to 1850 CE) and modern (post-1850 CE) time frames. A comprehensive physical and chemical dataset, including radioisotope (137Cs, 210Pb, 14C), stable isotope (δ13C), element concentration (%C, %N, C:N), and dry bulk density, has been built for several sediment cores. Results indicate that carbon and mineral accumulation rates have increased from paleo to modern times, potentially because of better growing and preservation conditions for organic matter in a modern climate. Paleoclimate trends in the Medieval Climate Anomaly (MCA) and warm periods interspersed within the Little Ice Age (LIA) also correlate with greater contributions of wetland organic matter, as evidenced by lighter δ13C values. Cold climate periods within the LIA correlate with increased aquatic organic matter sourcing and heavier δ13C values, with some spikes of wetland sources interspersed throughout the LIA. Future temperatures are predicted to rise with global climate change, which may continue to expand carbon stores in Arctic coastal wetland sediments. This has been observed in the swale environments at Cape Espenberg, where increasingly favourable growing and soil-preservation conditions (i.e. wet/anoxic soils and lower salinity to limit organic material decay, higher temperatures to promote growth) are increasing the carbon storage within Arctic coastal carbon reservoirs. 
    more » « less
    Free, publicly-accessible full text available October 20, 2026
  2. The Arctic is experiencing warming and ecological shifts due to climate change and the compounded effects of polar amplification. Arctic Alaskan coastal marsh environments, such as the Cape Espenberg barrier beach system, offers an opportunity to determine the carbon cycle response to changing climate in sediment records that have been preserved through time as a shoreline-parallel, linear geometry prograding geomorphic features. This study determines the carbon and mineral accumulation trends in marsh environments at Cape Espenberg for both paleo (pre 1850 after death [AD]) and modern (post 1850 AD) timeframes. A comprehensive physical and chemical dataset, including radioisotope (Caesium-137 [137Cs], Lead-210 [210Pb], Carbon-14 [14C]), stable isotope (delta-13 Carbon [δ13C]), element concentration (%Carbon [C], %Nitrogen [N], C:N), and dry bulk density, has been built for several sediment cores. Results indicate carbon and mineral accumulations have increased from paleo to modern times, potentially due to better growing and/or preservation conditions for organic matter under a modern climate. Paleoclimate trends in the Medieval Climate Anomaly (MCA), and warm periods interspersed within the Little Ice Age (LIA), also correlate to greater contributions of wetland organic matter as evidenced by lighter δ13C values. Cold climate periods within the Little Ice Age correlate with increased aquatic organic matter sourcing and heavier δ13C values with some spikes of wetland sources interspersed throughout the LIA. Modern warming may potentially continue to expand carbon stores in Arctic coastal wetlands as future temperatures are predicted to rise with global climate change, as observed in the swale environments at Cape Espenberg, where increasingly favorable growing and soil preservation conditions (i.e. wet/anoxic soils and lower salinity to limit organic material decay, higher temperatures to promote growth) may result in future Arctic coastal carbon reservoirs. 
    more » « less
  3. Abstract. Environmental gradients can affect organic matter decay within and across wetlands and contribute to spatial heterogeneity in soil carbon stocks. We tested the sensitivity of decay rates to tidal flooding and soil depth in a minerogenic salt marsh using the tea bag index (TBI). Tea bags were buried at 10- and 50- cm along transects sited at lower, middle, and higher elevations that paralleled a headward eroding tidal creek. Plant and animal communities and soil properties were characterized once while replicate tea bags and porewaters were collected several times over one year. TBI decay rates were faster than prior litterbag studies in the same marsh, largely due to rapid green tea loss. Rooibos decay rates were comparable to natural marsh litter, potentially suggesting that is more useful as a standardized organic matter proxy than green tea. Decay was slowest at higher marsh elevations and not consistently related to other biotic (e.g., plants, crab burrows) and abiotic factors (e.g., porewater chemistry), indicating that local hydrology strongly affects organic matter loss rates. Tea BI rates were 32–118 % faster in the 10 cm horizon compared to 50 cm. Rates were fastest in the first three months and slowed 54–60 % at both depths between 3- and 6- months. Rates slowed further between 6- and 12- months but this was less dramatic at 10 cm (17 %) compared to 50 cm (50 %). Slower rates at depth and with time were unlikely due to the TBI stabilization factor, which was similar across depths and decreased from 6 to 12 months. Slower decay at 50 cm demonstrates that rates were constrained by the environmental conditions of this deeper horizon rather than the molecular composition of litter. Overall, these patterns suggest that hydrologic setting, which affects oxidant introduction and reactant removal and is often overlooked in marsh decomposition studies, may be a particularly important control on organic matter decay in the short term (3–12 months). transects sited at lower, middle, and higher elevations that paralleled a headward eroding tidal creek. 
    more » « less
  4. The Arctic is experiencing warming and ecological shifts due to climate change and the compounded effects of polar amplification. Arctic Alaskan coastal marsh environments, such as the Cape Espenberg barrier beach system, offers an opportunity to determine the carbon cycle response to changing climate in sediment records that have been preserved through time as a shoreline-parallel, linear geometry prograding geomorphic features. This study determines the carbon and mineral accumulation trends in marsh environments at Cape Espenberg for both paleo (pre 1850 after death [AD]) and modern (post 1850 AD) timeframes. A comprehensive physical and chemical dataset, including radioisotope (Caesium-137 [137Cs], Lead-210 [210Pb], Carbon-14 [14C]), stable isotope (delta-13 Carbon [δ13C]), element concentration (%Carbon [C], %Nitrogen [N], C:N), and dry bulk density, has been built for several sediment cores. Results indicate carbon and mineral accumulations have increased from paleo to modern times, potentially due to better growing and/or preservation conditions for organic matter under a modern climate. Paleoclimate trends in the Medieval Climate Anomaly (MCA), and warm periods interspersed within the Little Ice Age (LIA), also correlate to greater contributions of wetland organic matter as evidenced by lighter δ13C values. Cold climate periods within the Little Ice Age correlate with increased aquatic organic matter sourcing and heavier δ13C values with some spikes of wetland sources interspersed throughout the LIA. Modern warming may potentially continue to expand carbon stores in Arctic coastal wetlands as future temperatures are predicted to rise with global climate change, as observed in the swale environments at Cape Espenberg, where increasingly favorable growing and soil preservation conditions (i.e. wet/anoxic soils and lower salinity to limit organic material decay, higher temperatures to promote growth) may result in future Arctic coastal carbon reservoirs. 
    more » « less
  5. null (Ed.)
  6. Abstract Salt marsh ponds expand and deepen over time, potentially reducing ecosystem carbon storage and resilience. The water filled volumes of ponds represent missing carbon due to prevented soil accumulation and removal by erosion and decomposition. Removal mechanisms have different implications as eroded carbon can be redistributed while decomposition results in loss. We constrained ponding effects on carbon dynamics in a New England marsh and determined whether expansion and deepening impact nearby soils by conducting geochemical characterizations of cores from three ponds and surrounding high marshes and models of wind‐driven erosion. Radioisotope profiles demonstrate that ponds are not depositional environments and that contemporaneous marsh accretion represents prevented accumulation accounting for 32%–42% of the missing carbon. Erosion accounted for 0%–38% and was bracketed using radioisotope inventories and wind‐driven resuspension models. Decomposition, calculated by difference, removes 22%–68%, and when normalized over pond lifespans, produces rates that agree with previous metabolism measurements. Pond surface soils contain new contributions from submerged primary producers and evidence of microbial alteration of underlying peat, as higher levels of detrital biomarkers and thermal stability indices, compared to the marsh. Below pond surface horizons, soil properties and organic matter composition were similar to the marsh, indicating that ponding effects are shallow. Soil bulk density, elemental content, and accretion rates were similar between marsh sites but different from ponds, suggesting that lateral effects are spatially confined. Consequently, ponds negatively impact ecosystem carbon storage but at current densities are not causing pervasive degradation of marshes in this system. 
    more » « less
  7. Abstract Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous ‘blue carbon’ studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon‐storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R‐shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision‐making. 
    more » « less
  8. Abstract Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We firstdefineeach of the major C pools and fluxes and providerationalefor their importance to wetland C dynamics. For each approach, we clarifywhatcomponent of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such aswhereandwhenan approach is typically used,whocan conduct the measurements (expertise, training requirements), andhowapproaches are conducted, including considerations on equipment complexity and costs. Finally, we reviewkey covariatesandancillary measurementsthat enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. 
    more » « less