skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eberhart, M.E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. By leveraging the fundamental doctrine of the quantum theory of atoms in molecules — the partitioning of the electron charge density (ρ) into regions bounded by surfaces of zero flux — we map the gradient field of ρ onto a two-dimensional space called the gradient bundle condensed charge density ([Formula: see text]). The topology of [Formula: see text] appears to correlate with regions of chemical significance in ρ. The bond wedge is defined as the image in ρ of the basin of attraction in [Formula: see text], analogous to the Bader atom, which is the basin of attraction in ρ. A bond bundle is defined as the union of bond wedges that share interatomic surfaces. We show that maxima in [Formula: see text] typically map to bond paths in ρ, though this is not necessarily always true. This observation addresses many of the concerns regarding the chemical significance of bond critical points and bond paths in the quantum theory of atoms in molecules. 
    more » « less