skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eberle, Annika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Worldwide wind energy generation capacity has grown rapidly over the past several decades, and wind turbines installed at the beginning of this wave of growth are approaching the end of their design lifetimes. As an increasing number of wind power plants reach their end of life, both decommissioning and repowering (i.e., dismantling or refurbishing existing turbines and commissioning new ones) will produce waste material from the retired wind turbines, foundations, and balance of plant. However, the amount and type of waste, particularly for wind blades, is often mischaracterized. Although wind turbine components are largely recyclable, the blades are typically made of fiberglass composites, which can present challenges for material recovery and reuse. Within the USA, the accumulation of wind turbine blades in landfills has raised questions about whether the continued expansion of wind energy is sustainable if it results in substantial future waste. This study compares the mass and volume of potential global wind blade waste to other waste streams. It also discusses the materials used to manufacture wind turbine blades and summarizes current options for material redesign, recycling (recovery and reuse), repurposing, and disposal of used blades. The analysis indicates that, although wind turbine blades could represent 14% of the composite market by 2027, the potential future mass and volume of wind turbine blade waste is relatively small compared to other industries. These findings suggest that although the development of scalable, economically viable, and environmentally sustainable methods for wind turbine manufacturing, repurposing, and recycling is important, it may make sense to take advantage of synergies among multiple industries in recycling composite waste, rather than focusing solely on wind turbine blades. From a global perspective, larger sustainability, recycling, and waste stream reduction impacts can be made in other industries, such as transportation and construction. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026