skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eberle, Franziska"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The configuration balancing problem with stochastic requests generalizes well-studied resource allocation problems such as load balancing and virtual circuit routing. There are givenmresources andnrequests; each request has multiple possibleconfigurations, each of which increases the load of each resource by some amount. The goal is to select one configuration for each request to minimize themakespan: the load of the most-loaded resource. In the stochastic setting, the amount by which a configuration increases the resource load is uncertain until the configuration is chosen, but we are given a probability distribution. We develop both offline and online algorithms for configuration balancing with stochastic requests. When the requests are known offline, we give a non-adaptive policy for configuration balancing with stochastic requests that$$O(\frac{\log m}{\log \log m})$$ O ( log m log log m ) -approximates the optimal adaptive policy, which matches a known lower bound for the special case of load balancing on identical machines. When requests arrive online in a list, we give a non-adaptive policy that is$$O(\log m)$$ O ( log m ) competitive. Again, this result is asymptotically tight due to information-theoretic lower bounds for special cases (e.g., for load balancing on unrelated machines). Finally, we show how to leverage adaptivity in the special case of load balancing onrelatedmachines to obtain a constant-factor approximation offline and an$$O(\log \log m)$$ O ( log log m ) -approximation online. A crucial technical ingredient in all of our results is a new structural characterization of the optimal adaptive policy that allows us to limit the correlations between its decisions. 
    more » « less
  2. Abstract We study a fundamental online job admission problem where jobs with deadlines arrive online over time at their release dates, and the task is to determine a preemptive single-server schedule which maximizes the number of jobs that complete on time. To circumvent known impossibility results, we make a standard slackness assumption by which the feasible time window for scheduling a job is at least $$1+\varepsilon $$ 1 + ε times its processing time, for some $$\varepsilon >0$$ ε > 0 . We quantify the impact that different provider commitment requirements have on the performance of online algorithms. Our main contribution is one universal algorithmic framework for online job admission both with and without commitments. Without commitment, our algorithm with a competitive ratio of  $$\mathcal {O}(1/\varepsilon )$$ O ( 1 / ε ) is the best possible (deterministic) for this problem. For commitment models, we give the first non-trivial performance bounds. If the commitment decisions must be made before a job’s slack becomes less than a $$\delta $$ δ -fraction of its size, we prove a competitive ratio of $$\mathcal {O}(\varepsilon /((\varepsilon -\delta )\delta ^2))$$ O ( ε / ( ( ε - δ ) δ 2 ) ) , for $$0<\delta <\varepsilon $$ 0 < δ < ε . When a provider must commit upon starting a job, our bound is  $$\mathcal {O}(1/\varepsilon ^2)$$ O ( 1 / ε 2 ) . Finally, we observe that for scheduling with commitment the restriction to the “unweighted” throughput model is essential; if jobs have individual weights, we rule out competitive deterministic algorithms. 
    more » « less