skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eby, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While it is possible to estimate the dark matter density at the Sun distance from the galactic center, this does not give information on actual dark matter density in the Solar system. There can be considerable local enhancement of dark matter density in the vicinity of gravitating centers, including the Sun, the Earth, as well as other planets in the solar system. Generic mechanisms for the formation of such halos were recently elucidated. In this work, we studies the possible halo dark matter overdensities and corresponding dark matter masses allowed for various objects in the solar system. We explore spacecraft missions to detect such halos with instruments such as quantum clocks, atomic and molecular spectrometers designed to search for fast (tens of hertz to gigahertz) oscillations of fundamental constants, highly sensitive comagnetometers, and other quantum sensors and sensor networks. 
    more » « less
  2. In a broad class of theories, the accumulation of ultralight dark matter (ULDM) with particles of mass 10 22 eV < m ϕ < 1 eV leads to the formation of long-lived bound states known as boson stars. When the ULDM exhibits self-interactions, prodigious bursts of energy carried by relativistic bosons are released from collapsing boson stars in bosenova explosions. We extensively explore the potential reach of terrestrial and space-based experiments for detecting transient signatures of emitted relativistic bursts of scalar particles, including ULDM coupled to photons, electrons, and gluons, capturing a wide range of motivated theories. For the scenario of relaxion ULDM, we demonstrate that upcoming experiments and technology such as nuclear clocks as well as space-based interferometers will be able to sensitively probe orders of magnitude in the ULDM coupling-mass parameter space, challenging to study otherwise, by detecting signatures of transient bosenova events. Detection of a bosenova event may also give information about microphysics properties of ϕ that would otherwise be difficult with typical direct detection methods. Our analysis can be readily extended to different scenarios of relativistic scalar particle emission. Published by the American Physical Society2024 
    more » « less
  3. A<sc>bstract</sc> Ultralight dark matter (ULDM) particles of massmϕ≲ 1 eV can form boson stars in DM halos. Collapse of boson stars leads to explosive bosenova emission of copious relativistic ULDM particles. In this work, we analyze the sensitivity of terrestrial and space-based experiments to detect such relativistic scalar ULDM particles interacting through quadratic couplings with Standard Model constituents, including electrons, photons, and gluons. We highlight key differences with searches for linear ULDM couplings. Screening of ULDM with quadratic couplings near the surface of the Earth can significantly impact observations in terrestrial experiments, motivating future space-based experiments. We demonstrate excellent ULDM discovery prospects, especially for quantum sensors, which can probe quadratic couplings orders below existing constraints by detecting bosenova events in the ULDM mass range 10−23eV ≲mϕ≲ 10−5eV. We also report updated constraints on quadratic couplings of ULDM in case it comprises cold DM. 
    more » « less
  4. Abstract We derive purely gravitational constraints on dark matter and cosmic neutrino profiles in the solar system using asteroid (101955) Bennu. We focus on Bennu because of its extensive tracking data and high-fidelity trajectory modeling resulting from the OSIRIS-REx mission. We find that the local density of dark matter is bound byρDM ≲ 3.3 × 10-15 kg/m3 ≃ 6 × 106 ρ̅DM, in the vicinity of ∼ 1.1 au (where ρ̅DM ≃ 0.3 GeV/cm3). We show that high-precision tracking data of solar system objects can constrain cosmic neutrino overdensities relative to the Standard Model prediction n̅ν, at the level ofη ≡ nν/n̅ν ≲ 1.7 × 1011(0.1 eV/mν) (Saturn), comparable to the existing bounds from KATRIN and other previous laboratory experiments (withmνthe neutrino mass). These local bounds have interesting implications for existing and future direct-detection experiments. Our constraints apply to all dark matter candidates but are particularly meaningful for scenarios including solar halos, stellar basins, and axion miniclusters, which predict overdensities in the solar system. Furthermore, introducing a DM-SM long-range fifth force with a strength α̃Dtimes stronger than gravity, Bennu can set a constraint onρDM ≲ ρ̅DM(6 × 106/α̃D). These constraints can be improved in the future as the accuracy of tracking data improves, observational arcs increase, and more missions visit asteroids. 
    more » « less
  5. Free, publicly-accessible full text available December 1, 2026
  6. This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more kilometer--scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions. 
    more » « less
  7. Abstract We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies. 
    more » « less
  8. Abstract Numerous observations suggest that there exist undiscovered beyond‐the‐standard‐model particles and fields. Because of their unknown nature, these exotic particles and fields could interact with standard model particles in many different ways and assume a variety of possible configurations. Here, an overview of the global network of optical magnetometers for exotic physics searches (GNOME), the ongoing experimental program designed to test a wide range of exotic physics scenarios, is presented. The GNOME experiment utilizes a worldwide network of shielded atomic magnetometers (and, more recently, comagnetometers) to search for spatially and temporally correlated signals due to torques on atomic spins from exotic fields of astrophysical origin. The temporal characteristics of a variety of possible signals currently under investigation such as those from topological defect dark matter (axion‐like particle domain walls), axion‐like particle stars, solitons of complex‐valued scalar fields (Q‐balls), stochastic fluctuations of bosonic dark matter fields, a solar axion‐like particle halo, and bursts of ultralight bosonic fields produced by cataclysmic astrophysical events such as binary black hole mergers are surveyed. 
    more » « less