Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In open multiagent systems, the set of agents operating in the environment changes over time and in ways that are nontrivial to predict. For example, if collaborative robots were tasked with fighting wildfires, they may run out of suppressants and be temporarily unavailable to assist their peers. Because an agent's optimal action depends on the actions of others, each agent must not only predict the actions of its peers, but, before that, reason whether they are even present to perform an action. Addressing openness thus requires agents to model each other’s presence, which can be enhanced through agents communicating about their presence in the environment. At the same time, communicative acts can also incur costs (e.g., consuming limited bandwidth), and thus an agent must tradeoff the benefits of enhanced coordination with the costs of communication. We present a new principled, decision-theoretic method in the context provided by the recent communicative interactive POMDP framework for planning in open agent settings that balances this tradeoff. Simulations of multiagent wildfire suppression problems demonstrate how communication can improve planning in open agent environments, as well as how agents tradeoff the benefits and costs of communication under different scenarios.more » « less
-
In open multiagent systems, the set of agents operating in the environment changes over time and in ways that are nontrivial to predict. For example, if collaborative robots were tasked with fighting wildfires, they may run out of suppressants and be temporarily unavailable to assist their peers. Because an agent’s optimal action depends on the actions of others, each agent must not only predict the actions of its peers, but, before that, reason whether they are even present to perform an action. Addressing openness thus requires agents to model each other’s presence, which can be enhanced through agents communicating about their presence in the environment. At the same time, communicative acts can also incur costs (e.g., consuming limited bandwidth), and thus an agent must tradeoff the benefits of enhanced coordination with the costs of communication. We present a new principled, decision-theoretic method in the context provided by the recent communicative interactive POMDP framework for planning in open agent settings that balances this tradeoff. Simulations of multiagent wildfire suppression problems demonstrate how communication can improve planning in open agent environments, as well as how agents tradeoff the benefits and costs of communication under different scenarios.more » « less
-
In open agent systems, the set of agents that are cooperating or competing changes over time and in ways that are nontrivial to predict. For example, if collaborative robots were tasked with fighting wildfires, they may run out of suppressants and be temporarily unavailable to assist their peers. We consider the problem of planning in these contexts with the additional challenges that the agents are unable to communicate with each other and that there are many of them. Because an agent's optimal action depends on the actions of others, each agent must not only predict the actions of its peers, but, before that, reason whether they are even present to perform an action. Addressing openness thus requires agents to model each other's presence, which becomes computationally intractable with high numbers of agents. We present a novel, principled, and scalable method in this context that enables an agent to reason about others' presence in its shared environment and their actions. Our method extrapolates models of a few peers to the overall behavior of the many-agent system, and combines it with a generalization of Monte Carlo tree search to perform individual agent reasoning in many-agent open environments. Theoretical analyses establish the number of agents to model in order to achieve acceptable worst case bounds on extrapolation error, as well as regret bounds on the agent's utility from modeling only some neighbors. Simulations of multiagent wildfire suppression problems demonstrate our approach's efficacy compared with alternative baselines.more » « less