skip to main content

Search for: All records

Creators/Authors contains: "Eckert, Andrew J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Extant conifer species may be susceptible to rapid environmental change owing to their long generation times, but could also be resilient due to high levels of standing genetic diversity. Hybridisation between closely related species can increase genetic diversity and generate novel allelic combinations capable of fuelling adaptive evolution. Our study unravelled the genetic architecture of adaptive evolution in a conifer hybrid zone formed betweenPinus strobiformisandP. flexilis. Using a multifaceted approach emphasising the spatial and environmental patterns of linkage disequilibrium and ancestry enrichment, we identified recently introgressed and background genetic variants to be driving adaptive evolution along different environmental gradients. Specifically, recently introgressed variants fromP. flexiliswere favoured along freeze-related environmental gradients, while background variants were favoured along water availability-related gradients. We posit that such mosaics of allelic variants within conifer hybrid zones will confer upon them greater resilience to ongoing and future environmental change and can be a key resource for conservation efforts.

    more » « less
  2. Abstract

    We implemented multilocus selection in a spatially‐explicit, individual‐based framework that enables multivariate environmental gradients to drive selection in many loci as a new module for the landscape genetics programs, CDPOP and CDMetaPOP. Our module simulates multilocus selection using a linear additive model, providing a flexible platform to evaluate a wide range of genotype‐environment associations. Importantly, the module allows simulation of selection in any number of loci under the influence of any number of environmental variables. We validated the module with individual‐based selection simulations under Wright‐Fisher assumptions. We then evaluated results for simulations under a simple landscape selection model. Next, we simulated individual‐based multilocus selection across a complex selection landscape with three loci linked to three different environmental variables. Finally, we demonstrated how the program can be used to simulate multilocus selection under varying selection strengths across different levels of gene flow in a landscape genetics framework. This new module provides a valuable addition to the study of landscape genetics, allowing for explicit evaluation of the contributions and interactions between gene flow and selection‐driven processes across complex, multivariate environmental and landscape conditions.

    more » « less
  3. Abstract

    Populus tremuloidesis the widest‐ranging tree species in North America and an ecologically important component of mesic forest ecosystems displaced by the Pleistocene glaciations. Using phylogeographic analyses of genome‐wide SNPs (34,796 SNPs, 183 individuals) and ecological niche modeling, we inferred population structure, ploidy levels, admixture, and Pleistocene range dynamics ofP. tremuloides, and tested several historical biogeographical hypotheses. We found three genetic lineages located mainly in coastal–Cascades (cluster 1), east‐slope Cascades–Sierra Nevadas–Northern Rockies (cluster 2), and U.S. Rocky Mountains through southern Canadian (cluster 3) regions of theP. tremuloidesrange, with tree graph relationships of the form ((cluster 1, cluster 2), cluster 3). Populations consisted mainly of diploids (86%) but also small numbers of triploids (12%) and tetraploids (1%), and ploidy did not adversely affect our genetic inferences. The main vector of admixture was from cluster 3 into cluster 2, with the admixture zone trending northwest through the Rocky Mountains along a recognized phenotypic cline (Utah to Idaho). Clusters 1 and 2 provided strong support for the “stable‐edge hypothesis” that unglaciated southwestern populations persisted in situ since the last glaciation. By contrast, despite a lack of clinal genetic variation, cluster 3 exhibited “trailing‐edge” dynamics from niche suitability predictions signifying complete northward postglacial expansion. Results were also consistent with the “inland dispersal hypothesis” predicting postglacial assembly of Pacific Northwestern forest ecosystems, but rejected the hypothesis that Pacific‐coastal populations were colonized during outburst flooding from glacial Lake Missoula. Overall, congruent patterns between our phylogeographic and ecological niche modeling results and fossil pollen data demonstrate complex mixtures of stable‐edge, refugial locations, and postglacial expansion withinP. tremuloides. These findings confirm and refine previous genetic studies, while strongly supporting a distinct Pacific‐coastal genetic lineage of quaking aspen.

    more » « less
  4. Abstract

    A lack of optimal gene combinations, as well as low levels of genetic diversity, is often associated with the formation of species range margins. Conservation efforts rely on predictive modelling using abiotic variables and assessments of genetic diversity to determine target species and populations for controlled breeding, germplasm conservation and assisted migration. Biotic factors such as interspecific competition and hybridization, however, are largely ignored, despite their prevalence across diverse taxa and their role as key evolutionary forces. Hybridization between species with well‐developed barriers to reproductive isolation often results in the production of offspring with lower fitness. Generation of novel allelic combinations through hybridization, however, can also generate positive fitness consequences. Despite this possibility, hybridization‐mediated introgression is often considered a threat to biodiversity as it can blur species boundaries. The contribution of hybridization towards increasing genetic diversity of populations at range margins has only recently gathered attention in conservation studies. We assessed the extent to which hybridization contributes towards range dynamics by tracking spatio‐temporal changes in the central location of a hybrid zone between two recently diverged species of pines:Pinus strobiformisandP. flexilis. By comparing geographic cline centre estimates for global admixture coefficient with morphological traits associated with reproductive output, we demonstrate a northward shift in the hybrid zone. Using a combination of spatially explicit, individual‐based simulations and linkage disequilibrium variance partitioning, we note a significant contribution of adaptive introgression towards this northward movement, despite the potential for differences in regional population size to aid hybrid zone movement. Overall, our study demonstrates that hybridization between recently diverged species can increase genetic diversity and generate novel allelic combinations. These novel combinations may allow range margin populations to track favourable climatic conditions or facilitate adaptive evolution to ongoing and future climate change.

    more » « less
  5. Abstract

    Interactions between extrinsic factors, such as disruptive selection and intrinsic factors, such as genetic incompatibilities among loci, often contribute to the maintenance of species boundaries. The relative roles of these factors in the establishment of reproductive isolation can be examined using species pairs characterized by gene flow throughout their divergence history. We investigated the process of speciation and the maintenance of species boundaries betweenPinus strobiformisandPinus flexilis. Utilizing ecological niche modelling, demographic modelling and genomic cline analyses, we illustrated a divergence history with continuous gene flow. Our results supported an abundance of advanced generation hybrids and a lack of loci exhibiting steep transition in allele frequency across the hybrid zone. Additionally, we found evidence for climate‐associated variation in the hybrid index and niche divergence between parental species and the hybrid zone. These results are consistent with extrinsic factors, such as climate, being an important isolating mechanism. A build‐up of intrinsic incompatibilities and of coadapted gene complexes is also apparent, although these appear to be in the earliest stages of development. This supports previous work in coniferous species demonstrating the importance of extrinsic factors in facilitating speciation. Overall, our findings lend support to the hypothesis that varying strength and direction of selection pressures across the long lifespans of conifers, in combination with their other life history traits, delays the evolution of strong intrinsic incompatibilities.

    more » « less