skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Edgeton, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The wider application of spintronic devices requires the development of new material platforms that can efficiently manipulate spin. Bismuthate-based superconductors are centrosymmetric systems that are generally thought to offer weak spin–orbit coupling. Here, we report a large spin–orbit torque driven by spin polarization generated in heterostructures based on the bismuthate BaPb1-xBixO3 (which is in a non-superconducting state). Using spin-torque ferromagnetic resonance and d.c. non-linear Hall measurements, we measure a spin–orbit torque efficiency of around 2.7 and demonstrate current driven magnetization switching at current densities of 4×10^5 A〖cm〗^(-2). We suggest that the unexpectedly large current-induced torques could be the result of an orbital Rashba effect associated with local inversion symmetry breaking in BaPb1-xBixO3. 
    more » « less
  2. Abstract

    Topological materials are derived from the interplay between symmetry and topology. Advances in topological band theories have led to the prediction that the antiperovskite oxide Sr3SnO is a topological crystalline insulator, a new electronic phase of matter where the conductivity in its (001) crystallographic planes is protected by crystallographic point group symmetries. Realization of this material, however, is challenging. Guided by thermodynamic calculations, a deposition approach is designed and implemented to achieve the adsorption‐controlled growth of epitaxial Sr3SnO single‐crystal films by molecular‐beam epitaxy (MBE). In situ transport and angle‐resolved photoemission spectroscopy measurements reveal the metallic and electronic structure of the as‐grown samples. Compared with conventional MBE, the used synthesis route results in superior sample quality and is readily adapted to other topological systems with antiperovskite structures. The successful realization of thin films of Sr3SnO opens opportunities to manipulate topological states by tuning symmetries via strain engineering and heterostructuring.

     
    more » « less