skip to main content


Search for: All records

Creators/Authors contains: "Edinbarough Immanuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Writing Assignment Tutor Training in STEM (WATTS) is part of a three-year NSF IUSE grant with participants at three institutions. This research project seeks to determine to what extent students in the WATTS project show greater writing improvement than students using writing tutors not trained in WATTS. The team collected baseline, control, and experimental data. Baseline data included reports written by engineering and engineering technology students with no intervention to determine if there were variations in written communication related to student demographics and institutions. Control data included reports written by students who visited tutors with no WATTS training, and experimental data included reports written by students who visited tutors who were WATTS-trained. Reports were evaluated by the research team using a slightly modified version of the American Association of Colleges and Universities (AAC&U) Written Communication VALUE Rubric. Baseline data assessment also provided an opportunity to test the effectiveness of the rubric. This paper presents findings from the analysis of the control and experimental data to determine the impact of WATTS on student writing in lab reports. An aggregate score for each lab report was determined by averaging the reviewer scores. An analysis was run to determine if there was a statistical difference between pre-tutoring lab report scores from the baseline, control, and experimental rubric scores for each criterion and total scores; there was not a statistically significant difference. The research team ran a Wilcoxon signed-rank test to assess the relationship between control and experimental aggregate rubric scores for each criterion. The preliminary analysis of the control and experimental data shows that the WATTS intervention has a positive, statistically significant impact on written communication skills regardless of the campus student demographics. Since WATTS has been shown to be a low-cost, effective intervention to improve engineering and engineering technology students’ written communication skills at these participating campuses, it has potential use for other institutions to positively impact their students’ written communication. 
    more » « less
  2. Undergraduate writing skills in STEM fields, especially engineering, need improvement. Yet students in engineering fields often do not value them and underestimate the amount of writing they will do in their careers. University writing centers can be a helpful resource, but the peer writing tutors that often staff them need to be prepared for the differences in writing between humanities and STEM fields. The Writing Assignment Tutor Training in STEM (WATTS) model was designed to improve tutor confidence and student writing. In this innovative training, the writing center supervisor and STEM instructor collaboratively create a one-hour training for tutors about the assignment content, technical terminology, genre conventions, and instructor expectations. A research study on this multidisciplinary collaborative project is being conducted to determine the impact of WATTS on students, tutors, and faculty and to identify its mitigating and moderating effects, assessing the elements of the model that have the most impact. Data from all WATTS stakeholders—students, tutors, faculty and writing center staff—have been collected. Both quantitative and qualitative instruments were used, including pre- and post-surveys, interviews and focus groups. WATTS’ effects on student writing have been assessed by the comparison of pre- and post-tutoring reports using a normed rubric and have demonstrated statistically significantly improvement in student writing. The results are being used to develop a replicable, sustainable model for dissemination to other institutions and application within other STEM fields. Increasing collaboration between engineering instructors and writing centers is a desirable outcome and essential for WATTS dissemination to a broad audience. NSF funding of this project has enabled the investigators to expand WATTS to additional engineering courses, test key factors with more instructors, and refine the process. It is anticipated that the study will contribute valuable knowledge to facilitate the improvement of student writing in STEM fields. As the cost of higher education increases, institutions are pressured to graduate students in four years while engineering curricula are becoming more complex. WATTS presents an economical, effective method to improve student writing in the discipline. Several factors indicate that it has the potential for broad dissemination and impact and will provide a foundation for a sustainable model for future work as instructors become trainers for their colleagues, allowing additional ongoing expansion and implementation. WATTS serves as a model for institutions (large or small) to capitalize on existing infrastructure and resources to achieve large-scale improvements to undergraduate STEM writing while increasing interdisciplinary collaboration and institutional support. 
    more » « less
  3. Writing is generally recognized as fundamental to the formation and communication of scientific and technical knowledge to peer groups and general audiences. Often, persuasive writing is an essential attribute emphasized by industries and businesses for a successful career in STEM fields. Nevertheless, the current scenario is that students in STEM fields, with their increased demand for more specialized skills in fewer credit hours combined with a lack of emphasis on writing from engineering faculty members, make addressing this need difficult. In addition, students in engineering fields often do not value writing skills and underestimate the amount of writing they will do in their careers. Hence, it is essential to understand and quantify the level of writing skills STEM students exhibit in their technical courses so that mitigation efforts can be designed using commonly available resources to enhance this important skillset among the students, including university writing centers. A research question was posed to study this aspect of technical writing: How do STEM students at institutions conceive of writing and its role in classroom laboratories? This research was conducted at three different universities with students of varied demographics, including one which is designated as a Hispanic-serving institution, via a sequential mixed-methods design. The demography variation among the institutions includes the level of college preparation among students and the mix of ethnicity to see if there are variations among certain groups. Although the sample size is small, the goal was to establish a methodology and a preliminary outcome set that could be used in further research with larger populations. Research data in the form of reports and surveys, were collected from groups of students from four distinct campuses to ascertain the technical writing capability of each group and provide a comparison to better understand the level of intervention required. The quantitative data was collected throughout the academic year through Likert scale surveys as well as rubric-based evaluation of reports. The research design, methodology, and results of the research findings and the proposed mitigation efforts to improve student writing in STEM fields are presented in the paper. The above research was sponsored by the National Science Foundation grant: Collaborative: Research: Writing Assignment Tutor Training in STEM (WATTS), an Interdisciplinary Approach for the Enhancement of Student Writing in STEM fields. 
    more » « less
  4. Writing is generally recognized as fundamental to the formation and communication of scientific and technical knowledge to peer groups and general audiences. Often, persuasive writing is an essential attribute emphasized by industries and businesses for a successful career in STEM fields. Nevertheless, the current scenario is that students in STEM fields, with their increased demand for more specialized skills in fewer credit hours combined with a lack of emphasis on writing from engineering faculty members, make addressing this need difficult. In addition, students in engineering fields often do not value writing skills and underestimate the amount of writing they will do in their careers. Hence, it is essential to understand and quantify the level of writing skills STEM students exhibit in their technical courses so that mitigation efforts can be designed using commonly available resources to enhance this important skillset among the students, including university writing centers. A research question was posed to study this aspect of technical writing: How do STEM students at institutions conceive of writing and its role in classroom laboratories? This research was conducted at three different universities with students of varied demographics, including one which is designated as a Hispanic-serving institution, via a sequential mixed-methods design. The demography variation among the institutions includes the level of college preparation among students and the mix of ethnicity to see if there are variations among certain groups. Although the sample size is small, the goal was to establish a methodology and a preliminary outcome set that could be used in further research with larger populations. Research data in the form of reports and surveys, were collected from groups of students from four distinct campuses to ascertain the technical writing capability of each group and provide a comparison to better understand the level of intervention required. The quantitative data was collected throughout the academic year through Likert scale surveys as well as rubric-based evaluation of reports. The research design, methodology, and results of the research findings and the proposed mitigation efforts to improve student writing in STEM fields are presented in the paper. The above research was sponsored by the National Science Foundation grant: Collaborative: Research: Writing Assignment Tutor Training in STEM (WATTS), an Interdisciplinary Approach for the Enhancement of Student Writing in STEM fields. 
    more » « less
  5. null (Ed.)
    This study characterized airborne microdroplet diameters and size distribution from two commercially available lubricants A and B for internal minimum quantity lubrication (MQL). The effects of air pressure, oil channel size, physical properties of lubricants on the resultant microdroplets and through-tool MQL drilling performance were studied. Airborne microdroplet diameters were highly sensitive to the coolant channel sizes and air pressure. Cluster method was used to divide microdroplets into smaller clusters for comparison. Experimental data show that the average airborne microdroplet of lubricant B was larger than that of lubricant A at different air pressures and channel sizes. The contact angle of lubricant A was at least 10° less than that of lubricant B when depositing on glass or aluminium. High-speed imaging showed the tendency of more viscous lubricant B sticking to the drill tip, and higher pressure and longer time was required to atomize this viscous oil. Built-up-edges were less significant when drilling A380 aluminium with lubricant A. Due to high machinability of A380 aluminium, variation of hole diameter and hole cylindricity were minimal when drilling with different lubricants. Insignificant improvement in hole quality was observed when drilling with excessive amount of MQL lubricants or high concentration of lubricant C in flood coolant. 
    more » « less