skip to main content

Search for: All records

Creators/Authors contains: "Edison, Arthur S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2024
  2. Millet, Oscar (Ed.)
    System biology relies on holistic biomolecule measurements, and untangling biochemical networks requires time-series metabolomics profiling. With current metabolomic approaches, time-series measurements can be taken for hundreds of metabolic features, which decode underlying metabolic regulation. Such a metabolomic dataset is untargeted with most features unannotated and inaccessible to statistical analysis and computational modeling. The high dimensionality of the metabolic space also causes mechanistic modeling to be rather cumbersome computationally. We implemented a faster exploratory workflow to visualize and extract chemical and biochemical dependencies. Time-series metabolic features (about 300 for each dataset) were extracted by Ridge Tracking-based Extract (RTExtract) on measurements from continuous in vivo monitoring of metabolism by NMR (CIVM-NMR) in Neurospora crassa under different conditions. The metabolic profiles were then smoothed and projected into lower dimensions, enabling a comparison of metabolic trends in the cultures. Next, we expanded incomplete metabolite annotation using a correlation network. Lastly, we uncovered meaningful metabolic clusters by estimating dependencies between smoothed metabolic profiles. We thus sidestepped the processes of time-consuming mechanistic modeling, difficult global optimization, and labor-intensive annotation. Multiple clusters guided insights into central energy metabolism and membrane synthesis. Dense connections with glucose 1-phosphate indicated its central position in metabolism in N . crassa .more »Our approach was benchmarked on simulated random network dynamics and provides a novel exploratory approach to analyzing high-dimensional metabolic dynamics.« less
  3. Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021—the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements.
    Free, publicly-accessible full text available August 1, 2023
  4. Abstract

    Mono- and bi-allelic variants in ALDH18A1 cause a spectrum of human disorders associated with cutaneous and neurological findings that overlap with both cutis laxa and spastic paraplegia. ALDH18A1 encodes the bifunctional enzyme pyrroline-5-carboxylate synthetase (P5CS) that plays a role in the de novo biosynthesis of proline and ornithine. Here we characterize a previously unreported homozygous ALDH18A1 variant (p.Thr331Pro) in four affected probands from two unrelated families, and demonstrate broad-based alterations in amino acid and antioxidant metabolism. These four patients exhibit variable developmental delay, neurological deficits and loose skin. Functional characterization of the p.Thr331Pro variant demonstrated a lack of any impact on the steady-state level of the P5CS monomer or mitochondrial localization of the enzyme, but reduced incorporation of the monomer into P5CS oligomers. Using an unlabeled NMR-based metabolomics approach in patient fibroblasts and ALDH18A1-null human embryonic kidney cells expressing the variant P5CS, we identified reduced abundance of glutamate and several metabolites derived from glutamate, including proline and glutathione. Biosynthesis of the polyamine putrescine, derived from ornithine, was also decreased in patient fibroblasts, highlighting the functional consequence on another metabolic pathway involved in antioxidant responses in the cell. RNA sequencing of patient fibroblasts revealed transcript abundance changes in several metabolicmore »and extracellular matrix-related genes, adding further insight into pathogenic processes associated with impaired P5CS function. Together these findings shed new light on amino acid and antioxidant pathways associated with ALDH18A1-related disorders, and underscore the value of metabolomic and transcriptomic profiling to discover new pathways that impact disease pathogenesis.

    « less
  5. Abstract

    Organic carbon transfer between surface ocean photosynthetic and heterotrophic microbes is a central but poorly understood process in the global carbon cycle. In a model community in which diatom extracellular release of organic molecules sustained growth of a co-cultured bacterium, we determined quantitative changes in the diatom endometabolome and the bacterial uptake transcriptome over two diel cycles. Of the nuclear magnetic resonance (NMR) peaks in the diatom endometabolites, 38% had diel patterns with noon or mid-afternoon maxima; the remaining either increased (36%) or decreased (26%) through time. Of the genes in the bacterial uptake transcriptome, 94% had a diel pattern with a noon maximum; the remaining decreased over time (6%). Eight diatom endometabolites identified with high confidence were matched to the bacterial genes mediating their utilization. Modeling of these coupled inventories with only diffusion-based phytoplankton extracellular release could not reproduce all the patterns. Addition of active release mechanisms for physiological balance and bacterial recognition significantly improved model performance. Estimates of phytoplankton extracellular release range from only a few percent to nearly half of annual net primary production. Improved understanding of the factors that influence metabolite release and consumption by surface ocean microbes will better constrain this globally significant carbonmore »flux.

    « less
  6. Abstract

    Phytoplankton-derived metabolites fuel a large fraction of heterotrophic bacterial production in the global ocean, yet methodological challenges have limited our understanding of the organic molecules transferred between these microbial groups. In an experimental bloom study consisting of three heterotrophic marine bacteria growing together with the diatomThalassiosira pseudonana, we concurrently measured diatom endometabolites (i.e., potential exometabolite supply) by nuclear magnetic resonance (NMR) spectroscopy and bacterial gene expression (i.e., potential exometabolite uptake) by metatranscriptomic sequencing. Twenty-two diatom endometabolites were annotated, with nine increasing in internal concentration in the late stage of the bloom, eight decreasing, and five showing no variation through the bloom progression. Some metabolite changes could be linked to shifts in diatom gene expression, as well as to shifts in bacterial community composition and their expression of substrate uptake and catabolism genes. Yet an overall low match indicated that endometabolome concentration was not a good predictor of exometabolite availability, and that complex physiological and ecological interactions underlie metabolite exchange. Six diatom endometabolites accumulated to higher concentrations in the bacterial co-cultures compared to axenic cultures, suggesting a bacterial influence on rates of synthesis or release of glutamate, arginine, leucine, 2,3-dihydroxypropane-1-sulfonate, glucose, and glycerol-3-phosphate. Better understanding of phytoplankton metabolite production, release,more »and transfer to assembled bacterial communities is key to untangling this nearly invisible yet pivotal step in ocean carbon cycling.

    « less
  7. Abstract Motivation Time-series NMR has advanced our knowledge about metabolic dynamics. Before analyzing compounds through modeling or statistical methods, chemical features need to be tracked and quantified. However, because of peak overlap and peak shifting, the available protocols are time consuming at best or even impossible for some regions in NMR spectra. Results We introduce RTExtract (Ridge Tracking based Extract), a computer vision-based algorithm, to quantify time-series NMR spectra. The NMR spectra of multiple time points were formulated as a 3D surface. Candidate points were first filtered using local curvature and optima, then connected into ridges by a greedy algorithm. Interactive steps were implemented to refine results. Among 173 simulated ridges, 115 can be tracked (RMSD < 0.001). For reproducing previous results, RTExtract took less than two hours instead of ∼48 hours, and two instead of seven parameters need tuning. Multiple regions with overlapping and changing chemical shifts are accurately tracked. Availability Source code is freely available within Metabolomics toolbox GitHub repository ( and is implemented in MATLAB and R. Supplementary information Supplementary data are available at Bioinformatics online.
  8. Abstract

    The communities of bacteria that assemble around marine microphytoplankton are predictably dominated by Rhodobacterales, Flavobacteriales, and families within the Gammaproteobacteria. Yet whether this consistent ecological pattern reflects the result of resource-based niche partitioning or resource competition requires better knowledge of the metabolites linking microbial autotrophs and heterotrophs in the surface ocean. We characterized molecules targeted for uptake by three heterotrophic bacteria individually co-cultured with a marine diatom using two strategies that vetted the exometabolite pool for biological relevance by means of bacterial activity assays: expression of diagnostic genes and net drawdown of exometabolites, the latter detected with mass spectrometry and nuclear magnetic resonance using novel sample preparation approaches. Of the more than 36 organic molecules with evidence of bacterial uptake, 53% contained nitrogen (including nucleosides and amino acids), 11% were organic sulfur compounds (including dihydroxypropanesulfonate and dimethysulfoniopropionate), and 28% were components of polysaccharides (including chrysolaminarin, chitin, and alginate). Overlap in phytoplankton-derived metabolite use by bacteria in the absence of competition was low, and only guanosine, proline, andN-acetyl-d-glucosamine were predicted to be used by all three. Exometabolite uptake pattern points to a key role for ecological resource partitioning in the assembly marine bacterial communities transforming recent photosynthate.