skip to main content

Search for: All records

Creators/Authors contains: "Eerola, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2023
  2. Free, publicly-accessible full text available January 1, 2023
  3. Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability andmore »Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.« less
  4. A bstract A search is presented for new particles produced at the LHC in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb − 1 , collected in 2017–2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with anmore »earlier search based on a data sample of 36 fb − 1 , collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.« less
    Free, publicly-accessible full text available November 1, 2022
  5. Free, publicly-accessible full text available September 1, 2022
  6. Free, publicly-accessible full text available September 1, 2022
  7. Free, publicly-accessible full text available August 1, 2022
  8. Free, publicly-accessible full text available August 1, 2022
  9. Abstract Production cross sections of the Higgs boson are measured in the $${\mathrm{H}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} \rightarrow 4\ell $$ H → Z Z → 4 ℓ ( $$\ell ={\mathrm{e}},{{{\upmu }}_{\mathrm{}}^{\mathrm{}}} $$ ℓ = e , μ ) decay channel. A data sample of proton–proton collisions at a center-of-mass energy of 13 $$\,\text {Te}\text {V}$$ Te , collected by the CMS detector at the LHC and corresponding to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ fb - 1 is used. The signal strength modifier $$\mu $$ μ , defined as the ratio of the Higgs boson production rate in the $$4\ellmore »$$ 4 ℓ channel to the standard model (SM) expectation, is measured to be $$\mu =0.94 \pm 0.07 \,\text {(stat)} ^{+0.09}_{-0.08} \,\text {(syst)} $$ μ = 0.94 ± 0.07 (stat) - 0.08 + 0.09 (syst) at a fixed value of $$m_{{\mathrm{H}}} = 125.38\,\text {Ge}\text {V} $$ m H = 125.38 Ge . The signal strength modifiers for the individual Higgs boson production modes are also reported. The inclusive fiducial cross section for the $${\mathrm{H}} \rightarrow 4\ell $$ H → 4 ℓ process is measured to be $$2.84^{+0.23}_{-0.22} \,\text {(stat)} ^{+0.26}_{-0.21} \,\text {(syst)} \,\text {fb} $$ 2 . 84 - 0.22 + 0.23 (stat) - 0.21 + 0.26 (syst) fb , which is compatible with the SM prediction of $$2.84 \pm 0.15 \,\text {fb} $$ 2.84 ± 0.15 fb for the same fiducial region. Differential cross sections as a function of the transverse momentum and rapidity of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet are measured. A new set of cross section measurements in mutually exclusive categories targeted to identify production mechanisms and kinematical features of the events is presented. The results are in agreement with the SM predictions.« less
    Free, publicly-accessible full text available June 1, 2022