Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Particle dark matter could belong to a multiplet that includes an electrically charged state. WIMP dark matter (χ0) accompanied by a negatively charged excited state (χ−) with a small mass difference (e.g. < 20 MeV) can form a bound-state with a nucleus such as xenon. This bound-state formation is rare and the released energy is O(1−10) MeV depending on the nucleus, making large liquid scintillator detectors suitable for detection. We searched for bound-state formation events with xenon in two experimental phases of the KamLAND-Zen experiment, a xenon-doped liquid scintillator detector. No statistically significant events were observed. For a benchmark parameter set of WIMP mass mχ0=1 TeV and mass difference Δm=17 MeV, we set the most stringent upper limits on the recombination cross section times velocity 〈σv〉 and the decay-width of χ− to 9.2×10−30cm3/s and 8.7×10−14 GeV, respectively at 90% confidence level.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract Polyethylene Naphthalate (PEN) plastic scintillator has been identified as potential self-vetoing structural material in low-background physics experiments. Radio-pure scintillating components have been produced from PEN using injection compression molding technology. These low-background PEN components will be used as optically active holders to mount the Germanium detectors in the Legend -200 neutrinoless double beta decay experiment. In this paper, we present the measurement of the optical properties of these PEN components. The scintillation light emission spectrum, time constant, attenuation and bulk absorption length as well as light output and light yield are reported. In addition, the surface of these PEN components has been characterized and an estimation of the surface roughness is presented. The light output of the final Legend -200 detector holders has been measured and is reported. These measurements were used to estimate the self-vetoing efficiency of these holders.more » « less
-
We consider the potential for a 10 kg undoped cryogenic CsI detector operating at the Spallation Neutron Source to measure coherent elastic neutrino-nucleus scattering and its sensitivity to discover new physics beyond the standard model (BSM). Through a combination of increased event rate, lower threshold, and good timing resolution, such a detector would significantly improve on past measurements. We considered tests of several BSM scenarios such as neutrino nonstandard interactions and accelerator-produced dark matter. This detector’s performance was also studied for relevant questions in nuclear physics and neutrino astronomy, namely the weak charge distribution of Cs and I nuclei and detection of neutrinos from a core-collapse supernova.
Published by the American Physical Society 2024 Free, publicly-accessible full text available May 1, 2025 -
Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.more » « less
-
Abstract Poly Ethylene Naphthalate (PEN) is an industrial polymer plastic which is investigated as a low background, transparent, scintillating and wavelength shifting structural material. PEN scintillates in the blue region and has excellent mechanical properties both at room and cryogenic temperatures. Thus, it is an ideal candidate for active structural components in experiments for the search of rare events like neutrinoless double-beta decay or dark matter recoils. Such optically active structures improve the identification and rejection efficiency of backgrounds events, like this improving the sensitivity of experiments. This paper reports on the production of radiopure and transparent PEN plates These structures can be used to mount germanium detectors operating in cryogenic liquids (LAr, LN). Thus, as first application PEN holders will be used to mount the Ge detectors in the Legend -200 experiment. The whole process from cleaning the raw material to testing the PEN active components under final operational conditions is reported.more » « less