The tidal disruption event (TDE) AT2022cmc represents the fourth known example of a relativistic jet produced by the tidal disruption of a stray star, providing a unique probe of the formation and evolution of relativistic jets in otherwise dormant supermassive black holes (SMBHs). Here we present deep, late-time Chandra observations of AT2022cmc extending to
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract t obs≈ 400 days after disruption. Our observations reveal a sudden decrease in the X-ray brightness by a factor of ≳14 over a factor of ≈2.3 in time, and a deviation from the earlier power-law decline with a steepeningα ≳ 3.2 (F X ∝t −α ), steeper than expected for a jet break, and pointing to the cessation of jet activity att obs≈ 215 days. Such a transition has been observed in two previous TDEs (Swift J1644+57 and Swift J2058+05). From the X-ray luminosity and the timescale of jet shut-off, we parameterize the mass of the SMBH in terms of unknown jet efficiency and accreted mass fraction parameters. Motivated by the disk–jet connection in active galactic nuclei, we favor black hole masses ≲105M ⊙(where the jet and disk luminosities are comparable), and disfavor larger black holes (in which extremely powerful jets are required to outshine their accretion disks). We additionally estimate a total accreted mass of ≈0.1M ⊙. Applying the same formalism to Swift J1644+57 and Swift J2058+05, we favor comparable black hole masses for these TDEs of ≲ a few × 105M ⊙, and suggest that jetted TDEs may preferentially form from lower-mass black holes when compared to nonrelativistic events, owing to generally lower jet and higher disk efficiencies at higher black hole masses. -
Abstract We present 1–12 GHz Karl G. Jansky Very Large Array observations of nine off-nuclear persistent radio sources (PRSs) in nearby (
z ≲ 0.055) dwarf galaxies, along with high-resolution European VLBI Network observations for one of them at 1.7 GHz. We explore the plausibility that these PRSs are associated with fast radio burst (FRB) sources by examining their properties—physical sizes, host-normalized offsets, spectral energy distributions (SEDs), radio luminosities, and light curves—and compare them to those of the PRSs associated with FRB 20121102A and FRB 20190520B, two known active galactic nuclei (AGN), and one likely AGN in our sample with comparable data, as well as other radio transients exhibiting characteristics analogous to FRB-PRSs. We identify a single source in our sample, J1136+2643, as the most promising FRB-PRS, based on its compact physical size and host-normalized offset. We further identify two sources, J0019+1507 and J0909+5655, with physical sizes comparable to FRB-PRSs, but which exhibit large offsets and flat spectral indices potentially indicative of a background AGN origin. We test the viability of neutron star wind nebula and hypernebula models for J1136+2643 and find that the physical size, luminosity, and SED of J1136+2643 are broadly consistent with these models. Finally, we discuss the alternative interpretation that the radio sources are instead powered by accreting massive black holes, and we outline future prospects and follow-up observations for differentiating between these scenarios. -
Abstract The discovery and localization of FRB 20240209A by the Canadian Hydrogen Intensity Mapping Fast Radio Burst (CHIME/FRB) experiment marks the first repeating FRB localized with the CHIME/FRB Outriggers and adds to the small sample of repeating FRBs with associated host galaxies. Here we present Keck and Gemini observations of the host that reveal a redshift
z = 0.1384 ± 0.0004. We perform stellar population modeling to jointly fit the optical through mid-IR data of the host and infer a median stellar mass log(M */M ⊙) = 11.35 ± 0.01 and a mass-weighted stellar population age ~11 Gyr, corresponding to the most massive and oldest FRB host discovered to date. Coupled with a star formation rate <0.31M ⊙yr−1, the specific star formation rate <10−11.9yr−1classifies the host as quiescent. Through surface brightness profile modeling, we determine an elliptical galaxy morphology, marking the host as the first confirmed elliptical FRB host. The discovery of a quiescent early-type host galaxy within a transient class predominantly characterized by late-type star-forming hosts is reminiscent of short-duration gamma-ray bursts, Type Ia supernovae, and ultraluminous X-ray sources. Based on these shared host demographics, coupled with a large offset as demonstrated in our companion Letter, we conclude that preferred sources for FRB 20240209A include magnetars formed through merging binary neutron stars/white dwarfs or the accretion-induced collapse of a white dwarf, or a luminous X-ray binary. Together with FRB 20200120E localized to a globular cluster in M81, our findings provide strong evidence that some fraction of FRBs may arise from a process distinct from the core collapse of massive stars. -
Abstract We present the results from a multiyear radio campaign of the superluminous supernova (SLSN) SN 2017ens, which yielded the earliest radio detection of an SLSN to date at the age of ∼3.3 yr after explosion. SN 2017ens was not detected at radio frequencies in the first ∼300 days but reached
L ν ≈ 1028erg s−1cm−2Hz−1atν ∼ 6 GHz, ∼1250 days post explosion. Interpreting the radio observations in the context of synchrotron radiation from the supernova shock interaction with the circumstellar medium (CSM), we infer an effective mass-loss rate atr ∼ 1017cm from the explosion’s site, for a wind speed ofv w = 50–60 km s−1as measured from optical spectra. These findings are consistent with the spectroscopic metamorphosis of SN 2017ens from hydrogen poor to hydrogen rich ∼190 days after explosion reported by Chen et al. SN 2017ens is thus an addition to the sample of hydrogen-poor massive progenitors that explode shortly after having lost their hydrogen envelope. The inferred circumstellar densities, implying a CSM mass up to ∼0.5M ☉, and low velocity of the ejection suggest that binary interactions (in the form of common-envelope evolution and subsequent envelope ejection) play a role in shaping the evolution of the stellar progenitors of SLSNe in the ≲500 yr preceding core collapse. -
Abstract We present a comprehensive study of 29 short gamma-ray bursts (SGRBs) observed ≈0.8−60 days postburst using Chandra and XMM-Newton. We provide the inferred distributions of the SGRB jet opening angles and true event rates to compare against neutron star merger rates. We perform a uniform analysis and modeling of their afterglows, obtaining 10 opening angle measurements and 19 lower limits. We report on two new opening angle measurements (SGRBs 050724A and 200411A) and eight updated values, obtaining a median value of 〈
θ j〉 ≈ 6.°1 [−3.°2, +9.°3] (68% confidence on the full distribution) from jet measurements alone. For the remaining events, we inferθ j≳ 0.°5–26°. We uncover a population of SGRBs with wider jets ofθ j≳ 10° (including two measurements ofθ j≳ 15°), representing ∼28% of our sample. Coupled with multiwavelength afterglow information, we derive a total true energy of 〈E true,tot〉 ≈ 1049–1050erg, which is consistent with magnetohydrodynamic jet launching mechanisms. Furthermore, we determine a range for the beaming-corrected event rate of Gpc−3yr−1, set by the inclusion of a population of wide jets on the low end, and the jet measurements alone on the high end. From a comparison with the latest merger rates, our results are consistent with the majority of SGRBs originating from binary neutron star mergers. However, our inferred rates are well above the latest neutron star–black hole merger rates, consistent with at most a small fraction of SGRBs originating from such mergers. -
ABSTRACT A tidal disruption event (TDE) occurs when a star is destroyed by a supermassive black hole. Broad-band radio spectral observations of TDEs trace the emission from any outflows or jets that are ejected from the vicinity of the supermassive black hole. However, radio detections of TDEs are rare, with <20 published to date, and only 11 with multi-epoch broad-band coverage. Here we present the radio detection of the TDE AT2020vwl and our subsequent radio monitoring campaign of the outflow that was produced, spanning 1.5 yr post-optical flare. We tracked the outflow evolution as it expanded between 1016 and 1017 cm from the supermassive black hole, deducing it was non-relativistic and launched quasi-simultaneously with the initial optical detection through modelling the evolving synchrotron spectra of the event. We deduce that the outflow is likely to have been launched by material ejected from stream-stream collisions (more likely), the unbound debris stream, or an accretion-induced wind or jet from the supermassive black hole (less likely). AT2020vwl joins a growing number of TDEs with well-characterized prompt radio emission, with future timely radio observations of TDEs required to fully understand the mechanism that produces this type of radio emission in TDEs.
-
Abstract We present the first X-ray census of fast radio burst (FRB) host galaxies to conduct the deepest search for active galactic nuclei (AGN) and X-ray counterparts to date. Our sample includes seven well-localized FRBs with unambiguous host associations and existing deep Chandra observations, including two events for which we present new observations. We find evidence for AGN in two FRB host galaxies based on the presence of X-ray emission coincident with their centers, including the detection of a luminous (
L X ≈ 5 × 1042erg s−1) X-ray source at the nucleus of FRB 20190608B’s host, for which we infer an SMBH mass ofM BH∼ 108M ⊙and an Eddington ratioL bol/L Edd≈ 0.02, characteristic of geometrically thin disks in Seyfert galaxies. We also report nebular emission-line fluxes for 24 highly secure FRB hosts (including 10 hosts for the first time), and assess their placement on a BPT diagram, finding that FRB hosts trace the underlying galaxy population. We further find that the hosts of repeating FRBs are not confined to the star-forming locus, contrary to previous findings. Finally, we place constraints on associated X-ray counterparts to FRBs in the context of ultraluminous X-ray sources (ULXs), and find that existing X-ray limits for FRBs rule out ULXs brighter thanL X ≳ 1040erg s−1. Leveraging the CHIME/FRB catalog and existing ULX catalogs, we search for spatially coincident ULX–FRB pairs. We identify a total of 28 ULXs spatially coincident with the localization regions for 17 FRBs, but find that the DM-inferred redshifts for the FRBs are inconsistent with the ULX redshifts, disfavoring an association between these specific ULX–FRB pairs. -
Abstract GW190814 was a compact object binary coalescence detected in gravitational waves by Advanced LIGO and Advanced Virgo that garnered exceptional community interest due to its excellent localization and the uncertain nature of the binary’s lighter-mass component (either the heaviest known neutron star, or the lightest known black hole). Despite extensive follow-up observations, no electromagnetic counterpart has been identified. Here, we present new radio observations of 75 galaxies within the localization volume at Δ t ≈ 35–266 days post-merger. Our observations cover ∼32% of the total stellar luminosity in the final localization volume and extend to later timescales than previously reported searches, allowing us to place the deepest constraints to date on the existence of a radio afterglow from a highly off-axis relativistic jet launched during the merger (assuming that the merger occurred within the observed area). For a viewing angle of ∼46° (the best-fit binary inclination derived from the gravitational wave signal) and assumed electron and magnetic field energy fractions of ϵ e = 0.1 and ϵ B = 0.01, we can rule out a typical short gamma-ray burst-like Gaussian jet with an opening angle of 15° and isotropic-equivalent kinetic energy 2 × 10 51 erg propagating into a constant-density medium n ≳ 0.1 cm −3 . These are the first limits resulting from a galaxy-targeted search for a radio counterpart to a gravitational wave event, and we discuss the challenges—and possible advantages—of applying similar search strategies to future events using current and upcoming radio facilities.more » « less